変更後の廃止措置計画書

廃止措置の方法,工程及び安全対策(概要)

1. 廃止措置の方法

1.1 廃止措置対象施設の範囲及びその敷地

核燃料サイクル工学研究所の再処理施設(以下「再処理施設」という。)の 敷地は、茨城県那珂郡東海村の南東端の平坦地に位置し、東側は太平洋に面 しており、その敷地面積は約 15 万平方メートルで、敷地はほぼ台形状の部 分とその南側にのびる帯状の部分とからなっている。

廃止措置対象施設の範囲は、再処理の事業の指定があったものとみなされた再処理施設全施設である。主要な廃止措置対象施設を表 1-1、再処理施設の敷地及び廃止措置対象施設の配置を図 1-1 に示す。再処理施設全施設の管理区域解除を目指し、管理区域を解除した建家は、利活用について検討する。

1.2 廃止措置の基本方針

1.2.1 廃止措置の進め方

- (1) 再処理施設の廃止措置においては、保有する放射性廃棄物に伴うリスクの早期低減を当面の最優先課題とし、これを安全・確実に進めるため、施設の高経年化対策と再処理施設の性能に係る技術基準に関する規則(以下「再処理維持基準規則」という。)を踏まえた安全性向上対策を重要事項として実施する。
- (2) 具体的に、当面は、リスクを速やかに低減させるため、①高放射性廃液を 貯蔵している高放射性廃液貯蔵場(HAW)の安全確保、②高放射性廃液のガ ラス固化技術開発施設(TVF)におけるガラス固化、③高放射性固体廃棄物 貯蔵庫(HASWS)の貯蔵状態の改善及び④低放射性廃棄物処理技術開発施 設(LWTF)における低放射性廃液のセメント固化を最優先で進める。
- (3) 先行して除染・解体に着手する施設(①分離精製工場(MP),②ウラン脱硝施設(DN),③プルトニウム転換技術開発施設(PCDF)及び④クリプトン回収技術開発施設(Kr))については、工程洗浄、系統除染等の実施により分散している核燃料物質を集約しリスク低減を図る。これらの施設に貯蔵している使用済燃料及び核燃料物質については、当面の貯蔵の安全を確保するとともに、搬出先が確保できたものから随時施設外に搬出する。
- (4) 他の施設は、廃棄物の処理フロー(図 2-1 (各施設間の主要な放射性廃棄物の流れ)参照)等を考慮し、原則として高放射性固体廃棄物貯蔵庫 (HASWS)、高放射性廃液貯蔵場(HAW)、ガラス固化技術開発施設(TVF)等の高線量系の施設から段階的に除染・解体に着手し、順次低線量系の放射性廃棄物を取り扱う施設の廃止を進め、全施設の管理区域解除を目指す。

- (5)低レベル放射性廃棄物*については、必要な処理を行い、貯蔵の安全を確保するとともに、自治体との協議の上、廃棄体化施設を整備し廃棄体化を進め、処分場の操業開始後随時搬出する。
- (6) バックエンド対策を国立研究開発法人日本原子力研究開発機構(以下「原子力機構」という。)の重要な事業の一つとして着実に進めていくため、原子力機構本部の体制強化を図るとともに、施設現場においても廃止措置の進捗に応じて体制を再処理施設保安規定に定め、最適化していく。

これらを踏まえ、再処理施設の廃止措置は、施設内に保有する放射性廃棄物の処理を行いつつ所期の目的が終了した建家ごとに段階的に進める。再処理施設の廃止措置の進め方について、「2. 廃止措置の工程」に示す。

なお,再処理施設の廃止措置においては,全期間の全工程について詳細を 定めることが困難であることから,今後詳細を定めることができたものに ついて逐次廃止措置計画の変更申請を行う。

※:高レベル放射性廃棄物とは、本書ではガラス固化体の他、再処理施設から発生する高放射性廃液を含めて指すこととし、低レベル放射性廃棄物とは、高レベル放射性廃棄物以外の放射性廃棄物のことを示す。

1.2.2 関係法令等の遵守

廃止措置の実施に当たっては、安全確保を最優先に、「核原料物質、核燃料物質及び原子炉の規制に関する法律」(以下「原子炉等規制法」という。)、

「核原料物質、核燃料物質及び原子炉の規制に関する法律施行令」,「使用 済燃料の再処理の事業に関する規則」(以下「再処理規則」という。)等の関係法令及び「核原料物質又は核燃料物質の製錬の事業に関する規則等の規 定に基づく線量限度等を定める告示」(以下「線量告示」という。)等の関係 告示を遵守する。また、保安のために必要な事項を再処理施設保安規定に 定めて、適切な品質保証活動のもと実施する。

さらに、日本原子力学会標準「試験研究炉及び核燃料取扱施設等の廃止措置の計画:2013」及び先行プラントの実績を参考とする。

1.2.3 放射線管理に関する方針

放射線業務従事者及び周辺公衆の被ばくが線量告示に定められている線量限度を超えないことはもとより、合理的に達成可能な限り低減するように、適切な除染方法、機器解体工法及び機器解体手順を策定する。

放射線業務従事者の被ばく低減のために,汚染された機器は,必要に応じて系統除染を実施する。機器解体に当たり,放射線レベルの高い区域で作業を行う場合は,遠隔操作装置,遮蔽を用いるとともに,汚染拡大防止措置等を施す。

周辺公衆の被ばくを低減させるため,放射性気体廃棄物及び放射性液体 廃棄物は,再処理事業指定申請書の記載の方法に従って適切に処理を行っ て放出管理し,平常時における周辺公衆の被ばく線量の評価結果が,再処理 事業指定申請書に記載の値を超えないようにする。

廃止措置段階における放射性廃棄物の放出管理に当たっては、放射性物質に起因する被ばく線量を低くするための措置を合理的に、かつ、可能な限り講ずる観点から、放出の基準(廃止措置計画に定める1年間の最大放出量等)を定め、廃止措置の進捗に応じて、適宜、これを見直す。放出の基準は、まずは工程洗浄が終了した段階に定め、廃止措置計画の変更を行う。

一方,放出の基準を定める間の当面の放出管理として,クリプトン-85,トリチウムについては,これまでの放出実績等から表 1-2-1,表 1-2-2 に示す放出管理目標値を定め,これを再処理施設保安規定にて管理する。また,工程洗浄に係る廃止措置計画の変更時においても工程洗浄に伴う放出管理目標値を定め,これを再処理施設保安規定にて管理する。

1.2.4 放射性廃棄物に関する方針

放射性廃棄物の発生量を合理的に可能な限り低減するように,適切な除 染方法,機器解体工法及び機器解体手順を策定するとともに,発生した放射 性廃棄物を適切に処理する。

放射性気体廃棄物は、再処理事業指定申請書の記載に従って、洗浄塔、フィルタ等で洗浄、ろ過したのち、主排気筒、第一付属排気筒及び第二付属排気筒を通じて大気に排出する。

放射性液体廃棄物は,再処理事業指定申請書の記載に従って,主に蒸発処理,中和処理,油分除去を行い,海中放出設備の放出管を通じて海中に放出する。一方,蒸発処理に伴い蒸発濃縮した低放射性濃縮廃液については,セメント固化し放射性廃棄物の貯蔵施設に貯蔵する。

放射性固体廃棄物は,再処理事業指定申請書の記載の方法に従って,焼却 処理等を行い,放射性廃棄物の貯蔵施設に貯蔵する。

放射性廃棄物の貯蔵施設に貯蔵した廃棄物は、廃棄体化施設の整備が整い次第廃棄体化施設に搬出し、処分場の要件に見合うよう廃棄体化処理する。廃棄体は処分場の操業開始後随時搬出する。放射性廃棄物でない廃棄物(管理区域外から発生した廃棄物を含む。)は、可能な限り再生利用するか、又は産業廃棄物として適切に廃棄する。

1.3 廃止措置の実施区分

再処理施設は、再処理により発生した放射性廃棄物を保有しており、継続して処理を行う必要がある状態の中で廃止措置に着手することから、一般的な原子力発電所における原子炉の廃止措置とは異なり、施設ごとに段階的に進めることになる。

分離精製工場(MP), ウラン脱硝施設(DN), プルトニウム転換技術開発施設 (PCDF), クリプトン回収技術開発施設(Kr)は, 所期の目的を終了したことから, 先行して除染, 解体に着手する施設であり, 一方, それ以外の施設においては, 当面, 放射性廃棄物の処理や貯蔵等を行い, 所期の目的を終了した施設から順次除染, 解体に着手に移行する。

廃止措置は、基本的に①解体準備期間、②機器解体期間及び③管理区域解除期間に区分し、建家ごとにこの順序で実施する。廃止措置の基本的なステップを表 1-3 に示す。

解体準備期間においては、分散している核燃料物質を集約する工程洗浄及び被ばく線量を低減する系統除染を実施するとともに、汚染状況の調査結果等を踏まえ、機器解体の工法及び手順の詳細について検討を進め、機器の解体撤去計画を策定する。

なお、機器の高経年化及び潜在的な危険性の排除の観点から一部の機器に対して先行して解体撤去を行うことも考慮する。

機器解体期間では、放射性物質により汚染された区域(管理区域)における供用を終了した機器の解体に着手する。

管理区域解除期間においては、管理区域の解除を行うに当たり、機器等の撤去後に建家躯体表面(コンクリート)に付着し残存している汚染について、はつり等の方法で除去する。その後、汚染検査を行い、安全を確認した上で、保安上必要な機器である換気設備や放射線管理設備等を撤去し、管理区域を順次解除する。管理区域を解除した建家は、利活用について検討する。

最終的には、再処理施設の全施設において、①使用済燃料、核燃料物質又は使用済燃料から分離された物の譲渡しが完了していること、②廃止措置対象施設の敷地に係る土壌及び当該敷地に残存する施設について放射線による障害の防止の措置を必要としない状況にあること、③使用済燃料、核燃料物質若しくは使用済燃料から分離された物又はこれらによって汚染された物の廃棄が終了していること、及び④放射線管理記録の原子力規制委員会が指定する機関への引渡しが完了していることの確認をもって廃止措置の終了とする。

なお、廃止措置に係る各作業の管理及び工程管理を確実に実施するため、 廃止措置計画に係る業務計画書を策定し、その管理の中で計画、実施、評価 及び改善を行うことを再処理施設保安規定に定める。

1.3.1 解体準備期間

解体準備期間では、建家及び構築物、放射性廃棄物の廃棄施設、放射線管理設備、換気設備、電源設備、その他保安上必要な設備等の必要な機能を維持管理する。

解体準備期間に実施する系統除染は、機器解体時における放射線業務従事者の被ばくを低減することを目的として、機器内表面の汚染を除去する。

基本的に酸・アルカリによる除染を繰り返すこととし、必要に応じてその他の除染剤を用いた化学的な除染を採用する。また、設備によっては補助的に 高圧水等による機械的な除染を行う。

放射線業務従事者及び周辺公衆の放射線被ばくを低減するように適切な機器解体工法及び解体手順を策定するため並びに機器解体に伴って発生する放射性固体廃棄物発生量の評価精度の向上を図るため、施設の汚染状況を調査する。施設の汚染状況を調査するために行う試料採取に当たっては、系統の維持管理に影響を与えないよう考慮する。

安全確保のための機能に影響を与えない範囲で管理区域外の機器や機器 の高経年化及び潜在的な危険性の排除の観点から一部の機器に対して先行 して解体撤去を行うことも考慮する。

なお,系統除染により合理的に放射能レベルが低減されたことをもって, 解体準備期間を完了とする。

解体準備期間における系統除染等の詳細な方法等については、解体準備期間に実施する工程洗浄後の汚染状況調査を踏まえ検討し決定することから、系統除染に着手するまでに廃止措置計画の変更申請を行う。

1.3.2 機器解体期間

機器解体期間では、管理区域における供用を終了した機器の解体に着手する。また、解体準備期間から着手している管理区域外の機器の解体撤去を継続して実施する。

機器解体は、機器解体に伴い発生する解体廃棄物の搬出ルート及び資機材置場を確保の上、工具等を用いた分解・取り外し、熱的切断装置又は機械的切断装置を用いた切断等を行う。解体廃棄物は、機器解体後のスペースを活用して保管することも考慮する。セル内機器の解体に当たっては、放射線業務従事者の被ばく低減のために、遮蔽や遠隔操作装置の利用等を考慮する。

これらの作業に伴う施設内の汚染拡大防止を図るために,必要に応じて 汚染拡大防止囲い,局所排気フィルタ及び局所排風機を導入する。

また,各種装置の使用に当たっては,取り扱う解体廃棄物の放射能レベルに応じて,必要な安全確保対策を講じる。

なお,管理区域に設置してある機器(保安上必要な機器を除く。)の解体を 全て終えたことをもって機器解体期間を完了とする。

機器解体期間における機器解体及び機器撤去の詳細な方法等については、 解体準備期間に実施する工程洗浄及び系統除染後の汚染状況調査を踏まえ 検討し決定することから、機器解体に着手するまでに廃止措置計画の変更 申請を行う。

1.3.3 管理区域解除期間

管理区域解除期間においては、管理区域の解除を行うに当たり、機器等の撤去後に建家躯体表面(コンクリート)に付着し残存している汚染について、はつり等の方法で除去する。その後、汚染検査を行い安全を確認した上で、換気設備や放射線管理設備等を撤去し、管理区域を順次解除する。管理区域を解除した建家は、利活用について検討する。

管理区域解除期間における詳細なはつり方法等については、機器解体期間に実施する機器の解体・撤去後の汚染状況調査を踏まえ検討し決定することから、はつり作業等に着手するまでに廃止措置計画の変更申請を行う。なお、管理区域の解除をもって当該施設の管理区域解除期間を完了とする。

1.4 リスク低減の取組

- 1.4.1 高放射性廃液を貯蔵している高放射性廃液貯蔵場(HAW)の安全確保 再処理に伴い発生した高放射性廃液をガラス固化技術開発施設(TVF)に 全て移送し終えるまでの間,長期にわたり貯蔵管理していくことから,再処 理維持基準規則を踏まえた安全対策を実施する。安全対策の内容を「5.1.2 性能維持施設の安全対策」に示す。
- 1.4.2 高放射性廃液のガラス固化技術開発施設(TVF)におけるガラス固化 再処理に伴い発生した高放射性廃液をガラス固化し、長期間の保管の安 全性を向上させるとともに、ガラス固化に要する期間を可能な限り短縮す るため、溶融炉の改良(傾斜角:45 度、傾斜形状:円錐)及び運転体制の強 化等を図る。また、機器トラブルの未然防止対策を講じること、事象が発生 した場合の影響緩和に係る対策を講じること等により、平成40年度までに ガラス固化処理を終了させる。

ガラス固化体の保管については、耐震、遮蔽、冷却機能を評価し、自治体との協議、廃止措置計画の変更認可を得た上で、現在のガラス固化技術開発施設(TVF)におけるガラス固化体の保管を6段積みから9段積みに変更し、420本から630本とするガラス固化体の保管能力の増強を早期に行う。さらには630本を超えるガラス固化体を保管できるよう新規保管施設の建設を必要な時期に行う。

1.4.3 高放射性固体廃棄物貯蔵庫(HASWS)の貯蔵状態の改善

高放射性固体廃棄物貯蔵庫(HASWS)では、高放射性固体廃棄物(ハル・エンドピース等)を貯蔵しているが、取出し設備がなく高放射性固体廃棄物のハンドリングができない状態である。これらの貯蔵状態の改善を図るため、新たに取出し建家を設け高放射性固体廃棄物の取出し装置を設置する。また、取り出した高放射性固体廃棄物は、取り出した高放射性固体廃棄物を貯蔵

するために整備する高線量廃棄物廃棄体化処理技術開発施設(第 1 期施設) (HWTF-1)で貯蔵し管理する。

なお,これらの高放射性固体廃棄物の取出しが完了するまでの安全対策は,別紙1に示す。

1.4.4 低放射性廃棄物処理技術開発施設(LWTF)における低放射性廃液のセメント固化

廃棄体化技術の進展を踏まえて、ホウ酸ナトリウムを用いた中間固化体を製造する蒸発固化設備から埋設処分可能なセメント固化設備への改造を行う。また、セメント固化体を浅地中処分する際に廃液に含まれる硝酸性窒素 (環境規制物質) による環境影響を低減させるため、廃液中の硝酸根を分解する設備の整備を行う。これらの改造及び整備により、再処理に伴い発生した低放射性濃縮廃液の固化・安定化を行い、低放射性濃縮廃液に係るリスク低減を図る (別紙2参照)。

1.5 使用しない設備の措置

分離精製工場(MP)においては、せん断装置に使用済燃料が装荷できないよう使用済燃料を導入するコンベアの通路上にある可動カバの開閉ができないようにするための措置、脱硝塔に硝酸ウラニル溶液を供給できないようにするための措置を施している。溶解槽、各抽出器、プルトニウム溶液蒸発缶、ウラン溶液蒸発缶等については系統除染終了後、それぞれの機器・配管等に措置を行い使用できないようにする。

また,クリプトン回収技術開発施設(Kr)においては,反応器を運転するために必要な原料の供給等ができないようにするための措置を施している。ウラン脱硝施設(DN)及びプルトニウム転換技術開発施設(PCDF)においても,系統除染終了後,それぞれの機器・配管等に措置を行い使用できないようにする。

その他, 廃溶媒処理技術開発施設(ST)において, PVC 固化のための加熱装置の運転ができないよう給電ケーブルの解線や制御盤への施錠の措置を施しており, その他の施設についても廃止措置の進捗状況及び施設の利用状況を踏まえ, 必要に応じて使用しない設備に対して措置を行うこととする。

これらの措置を適宜,再処理施設保安規定に定め実施することにより,安全を確保しつつ,施設定期自主検査及び点検整備方法の見直しを図る。

- 1.6 使用済燃料,核燃料物質及び使用済燃料から分離された物の管理及び譲渡しの方法
- 1.6.1 使用済燃料及び核燃料物質の存在場所ごとの種類及び数量 再処理施設における使用済燃料及び核燃料物質(分析又は校正に用いる 核燃料物質を除く。)の存在場所ごとの種類及び数量を表 1-4 に示す。今後,

廃止措置対象施設には,分析又は校正に用いる核燃料物質を除き,新たに 使用済燃料及び核燃料物質を持ち込まない。

1.6.2 使用済燃料,核燃料物質及び使用済燃料から分離された物の管理

分離精製工場(MP)に貯蔵中の使用済燃料は,搬出までの期間,当該施設の 貯蔵プールに貯蔵する。これらの燃料の取扱い及び貯蔵は,既往の許認可 を受けた燃料取扱操作設備,燃料貯蔵設備,燃料移動設備等で取り扱うと ともに,安全確保のために必要な臨界防止,崩壊熱除去及び閉じ込め機能 を有する既往の許認可を受けた設備を維持管理する。

ウラン貯蔵所(U03),第二ウラン貯蔵所(2U03)及び第三ウラン貯蔵所(3U03)に貯蔵中のウラン製品は、搬出までの期間、当該施設の貯蔵室に貯蔵する。これらの核燃料物質の取扱い及び貯蔵は、既往の許認可を受けたクレーン等で取り扱うとともに、安全確保のために必要な臨界防止機能を有する既往の許認可を受けた設備を維持管理する。

プルトニウム転換技術開発施設 (PCDF) に貯蔵中のウラン・プルトニウム 混合酸化物 (MOX) 粉末は、搬出が完了するまでの期間、当該施設の粉末貯蔵 室に貯蔵する。これらの核燃料物質の取扱い及び貯蔵は、既往の許認可を 受けたクレーン等で取り扱うとともに、安全確保のために必要な臨界防止 機能を有する既往の許認可を受けた設備を維持管理する。

これらの使用済燃料, ウラン製品, ウラン・プルトニウム混合酸化物(MOX) 粉末に係る設備の維持管理については, これまで再処理施設保安規定に定める巡視及び点検, 施設定期自主検査等により実施しており今後も継続して行う。

1.6.3 核燃料物質の譲渡し

(1)使用済燃料

使用済燃料は、専用の使用済燃料輸送用容器に収納し、専用の輸送船により、平成38年度までに国内又は我が国と原子力の平和利用に関する協力のための協定を締結している国の再処理事業者の再処理施設へ全量を搬出する予定である。

(2) ウラン製品及びウラン・プルトニウム混合酸化物 (MOX) 粉末

分離回収したウラン製品及びプルトニウム製品は,契約に基づき,契約相手先に返還する。または,分離回収したウラン及びプルトニウムの一部を契約相手先から原子力機構が購入する。これを踏まえ,ウラン貯蔵所(U03),第二ウラン貯蔵所(2U03)及び第三ウラン貯蔵所(3U03)に貯蔵中のウラン製品,プルトニウム転換技術開発施設(PCDF)に貯蔵中のウラン・プルトニウム混合酸化物(MOX)粉末を各施設の管理区域解除までに廃止対象施設外の施設に搬出する。

なお,再処理事業指定申請と異なる事項が生じた際は,再処理事業指定 変更申請を行う。

1.7 使用済燃料又は核燃料物質による汚染の除去

1.7.1 廃止措置対象施設の汚染の特徴

再処理施設は、構造、形状、材質等が多種多様な設備・機器から構成されており、原子炉のような材料の放射化はほとんど見られないが、化学形態、物理形態の異なるウラン、プルトニウム、核分裂生成物等の放射性物質が材料に付着し、核燃料物質等を取り扱ってきた工程設備全体やこれらの設備を収納しているセル等が汚染していることが特徴である。

これらの放射性物質による汚染の除去に当たっては、事前に対象施設・設備の汚染状況等の確認を行う。その結果に基づき、除染の要否及び方法を確定するとともに、放射線業務従事者及び周辺公衆の被ばく低減、放射性物質の施設内外への漏えい防止及び廃棄物低減の観点から、合理的に達成可能な限り汚染を除去する。

1.7.2 解体準備期間における除染

解体準備期間における除染は、再処理施設の供用期間中における設備・機器の点検等において被ばく低減対策として行ってきた化学的な除染及び機械的な除染の経験・実績を活かし、設備・機器等に応じた合理的かつ適切な方法で実施する。

分離精製工場(MP), ウラン脱硝施設(DN)及びプルトニウム転換技術開発施設(PCDF)における系統除染は,回収可能核燃料物質を再処理設備本体から取り出すための工程洗浄を実施したのち,機器解体時における放射線業務従事者の被ばくを低減することを目的として,機器内表面に付着したウラン,プルトニウムや核分裂生成物等による汚染を除去する。基本的に酸・アルカリによる除染を繰り返すこととし,必要に応じてその他の除染剤を用いた化学的な除染を採用する。また,設備によっては補助的に高圧水等による機械的な除染を行う。対象とする機器は,貯槽,抽出器,配管,弁等であり,解体準備期間に実施する。

クリプトン回収技術開発施設(Kr)においては、クリプトン貯蔵シリンダ に貯蔵しているクリプトンを管理した状態で安全に放出した後に、機器内 表面に付着した汚染の除去を行う。対象とする機器は、貯槽、配管、弁等で あり、解体準備期間に実施する。

系統除染に係る詳細な方法等については、工程洗浄やクリプトンの管理 した状態での放出後に行う汚染状況の調査を踏まえ、系統除染(平成32年 度)に着手するまでに定め、逐次廃止措置計画の変更申請を行う。

先行して除染・解体に着手する施設以外の施設における解体準備期間に おける除染については、各施設が系統除染に着手するまでに定め、逐次廃 止措置計画の変更申請を行う。

1.7.3機器解体期間における除染

機器解体期間における除染は、機器解体した後、系統除染では取り除くことができなかった機器内表面に付着したウラン、プルトニウムや核分裂生成物等による汚染を必要に応じて除去する。機器解体期間における汚染の除去に係る詳細な方法等については、機器解体に着手するまでに定め、逐次廃止措置計画の変更申請を行う。

1.7.4 管理区域解除期間における除染

管理区域を解除するため、管理区域の解除を行うに当たり、汚染された機器等の撤去後に建家躯体表面(コンクリート)に付着し残存しているウラン、プルトニウムや核分裂生成物等による汚染について、はつり等の方法で除去する。管理区域解除期間における汚染の除去に係る詳細な方法等については、建家の除染に着手するまでに定め、逐次廃止措置計画の変更申請を行う。

2. 廃止措置の工程

2.1 廃止の工程の全体像

再処理施設の廃止措置は,原子炉等規制法に基づく本廃止措置計画の認可 以降,この廃止措置計画に基づき実施する。再処理施設の廃止措置工程を表 1-5-1 に示す。

リスクの早期低減として、再処理維持基準規則を踏まえた安全対策を実施するとともに、ガラス固化技術開発施設(TVF)におけるガラス固化、高放射性固体廃棄物貯蔵庫(HASWS)の廃棄物の取出し/再貯蔵、低放射性廃棄物処理技術開発施設(LWTF)における低放射性廃液のセメント固化を最優先で実施する。

施設に保管・貯蔵している使用済燃料及び核燃料物質は、当面の保管・貯蔵の安全を確保するとともに、搬出先が確保できたものから随時施設外へ搬出する。

再処理施設の除染・解体等の廃止措置は、管理区域を有する約30施設について所期の目的が終了した建家ごとに基本的に3段階(第1段階:解体準備期間,第2段階:機器解体期間,第3段階:管理区域解除期間)のステップで進める。

分離精製工場 (MP), ウラン脱硝施設 (DN), プルトニウム転換技術開発施設 (PCDF) 及びクリプトン回収技術開発施設 (Kr) については, 先行して上述の除染・解体等の廃止措置に着手し, 第1段階となる工程洗浄の詳細な方法, 時期については, 平成29年度末までに定め, その後, 廃止措置計画の変更申請を行ったのち, 平成31年度以降に工程洗浄に着手する。

今後も継続して放射性廃棄物を取り扱う施設では、廃棄物処理を着実に進め、廃棄物の処理フロー(図 2-1 参照)等を考慮した上で、所期の目的を完了した施設から順に除染・解体に着手する。

そのため、除染・解体に着手する範囲を原則として、高放射性固体廃棄物 貯蔵庫(HASWS)、ガラス固化技術開発施設(TVF)、高放射性廃液貯蔵場(HAW)等 の高線量の放射性廃棄物を取り扱う施設から低線量の放射性廃棄物を取り 扱う施設へと推移していく計画とする。

なお,再処理施設から発生する放射性廃棄物を廃棄体化する高線量廃棄物 廃棄体化処理技術開発施設(第2期施設)(HWTF-2)と東海固体廃棄物廃棄体化 施設(TWTF-2)を今後必要な時期に建設し廃棄体化処理を行う。

上述のとおり、再処理施設の廃止措置は、施設内に保有する放射性廃棄物の処理を行いつつ所期の目的が終了した建家ごとに段階的に進めることから、最終的に管理区域を有する約30施設の廃止措置(管理区域解除)が全て完了するためには、約70年の期間が必要となる見通しである。

2.2 当面の実施工程

再処理維持基準規則を踏まえた安全対策に関する工程を表 1-5-2 に,工程 洗浄に関する工程を表 1-5-3 に,ガラス固化処理に関する工程を表 1-5-4 に 示す。

2.3 廃止措置の工程の管理

廃止措置工程における進捗状況等の評価について、廃止措置工程表に示す業務の実施状況を管理するため、必要な業務計画書を策定することを再処理施設保安規定に定める。廃止措置の工程の管理及び進捗状況に係る定期的な評価に係る具体的な方法、基準、体制、評価において工程の管理の問題又は進捗の遅延が生じていると認められたときに行う対応等については、業務計画書に定める。また、業務計画書に基づき実施状況を確認し、廃止措置工程に影響する業務の遅れなど、廃止措置計画の変更が必要であると判断した場合は、廃止措置計画の変更に係る必要な措置を行うことを再処理施設保安規定に定める。

- 3. 回収可能核燃料物質を再処理設備本体から取り出す方法及び時期
 - 3.1 せん断処理施設の操作の停止に関する恒久的な措置

使用済燃料をせん断装置に装荷できない措置を二つ以上講じ、それぞれに施錠管理を行うとともに、措置の解除を禁止する表示を行うことを既に再処理施設保安規定に定めている。

3.2 回収可能核燃料物質を再処理設備本体から取り出す方法及び時期 回収可能核燃料物質の存在場所ごとの保有量を表 1-6 に示す。これら回収 可能核燃料物質を再処理設備本体等から取り出すため,工程洗浄を実施する。 せん断工程のクリーンアップ作業で収集したせん断粉末の処理及び工程 内に残存する核燃料物質を回収することを目的に,一部の工程を作動させ, 洗浄を行う。回収したウラン及びプルトニウム溶液については粉末化する。

工程洗浄は、既に行った「緊急用電源の給電系統の整備」、「全動力電源喪失時の冷却・水素掃気に係る安全対策」に加え、「緊急安全対策設備への被水対策」等の安全対策を行った上で実施する。また、運転を長期停止していたことを配慮し、休止していた設備の点検及び使用する機器の作動確認、整備を実施した後に工程洗浄を開始する。

なお, せん断工程のクリーンアップ作業で収集したせん断粉末については, 工程洗浄で処理するまでの間, セル内に保管する。

工程洗浄は平成31年度から平成32年度に実施する計画であり,詳細な方法,時期については平成29年度末までに定め,その後,廃止措置計画の変更申請を行う。

4. 特定廃液の固型化その他の処理を行う方法及び時期

放射性液体廃棄物のうち、廃棄物の種類ごとにおいて、再処理施設全施設の合計の放射能量が 3.7 TBq 以上のものを特定廃液として取り扱う。具体的には、高放射性廃液、低放射性濃縮廃液を特定廃液とする(表 2-1 参照)。それらの処理を行う方法及び時期について以下に示す。

4.1 高放射性廃液

4.1.1 処理を行う方法

表 2-1 に示す高放射性廃液は、高放射性廃液貯蔵場(HAW)の高放射性廃液 貯槽からガラス固化技術開発施設(TVF)ガラス固化技術開発棟の受入槽に 受け入れ、必要に応じて組成調整や濃縮を行ったのち溶融炉へ送りガラス 原料とともに溶融し、ガラス固化体容器に注入し固化する。注入後、蓋を 溶接し保管する。

処理においては,再処理事業指定申請書に記載している安全対策に加え, 今後,再処理維持基準規則を踏まえ,必要な安全対策を行う。

4.1.2 処理を行う時期

ガラス固化技術開発施設 (TVF) における平成 28 年 10 月時点での再処理に伴い発生した約 400 m³の高放射性廃液の処理は平成 28 年 1 月に再開している。処理の期間短縮のため、運転体制を 4 班 3 交替から 5 班 3 交替にするための要員補強及び固化セル内で実施する大型機器等の解体作業を 4 班 3 交替で行うための要員補強を平成 29 年 10 月までに実施した。

また、平成29年6月までの処理の実績を踏まえ、設備機器の計画的更新や予備品対策等により遅延リスクを低減させるとともに、安定した運転継

続を実現させる観点から、平成31年度第1四半期に計画している運転は、ガラス固化体製造本数を50本とする。その後、段階的に本数を増加させ、平成37年度からは80本/キャンペーンとする。運転状況に応じて製造本数を増やし、処理をできるだけ前倒しで進める。

以上の対策を図ることにより、平成 40 年度までにガラス固化処理を終了 させる。

4.1.3 工程の管理

業務計画書に基づき実施状況を確認し、平成 40 年度までのガラス固化処理終了に影響するような工程の変更が必要であると判断した場合は、廃止措置計画の変更に係る必要な措置を行うことを再処理施設保安規定に定める。

4.2 低放射性濃縮廃液

4.2.1 処理を行う方法

低放射性濃縮廃液を低放射性濃縮廃液貯蔵施設(LWSF)から低放射性廃棄物処理技術開発施設(LWTF)に受け入れ、沈殿剤を用いたろ過処理、吸着処理、硝酸根分解処理、蒸発濃縮処理及びセメント固化処理を行う。具体的な処理を行う方法については平成32年度を目途に定め、その後、廃止措置計画の変更申請を行う。

4.2.2 処理を行う時期

低放射性濃縮廃液等の処理は低放射性廃棄物処理技術開発施設(LWTF)への硝酸根分解設備及びセメント固化設備の設置後となる平成 35 年度頃から開始し、現有する低放射性濃縮廃液等と系統除染等に伴い発生する低放射性濃縮廃液の処理終了まで継続する。

5. 安全対策

5.1 各施設の安全対策

5.1.1 性能維持施設

再処理施設は、廃止措置期間中においても使用済燃料の貯蔵、放射性廃棄物の処理・貯蔵、核燃料物質の保管を継続して行う必要がある。これらの施設については当面の間、再処理運転時と同様に性能を維持する必要があることから、表 1-7 に示す再処理運転時の施設定期自主検査の対象としていた設備及び緊急安全対策等として整備した設備、また、これらを含む系統を性能維持施設とする。また、再処理維持基準規則を踏まえた安全対策で整備する設備についても性能維持施設とし、逐次廃止措置計画に反映する。

これらの性能維持施設に要求される機能等については,「添付書類六 性能維持施設及びその性能並びにその性能を維持すべき期間に関する説明書」

に示す。

5.1.2 性能維持施設の安全対策

各施設の今後の使用計画を踏まえた上で,施設が保有する放射性物質によるリスクに応じて再処理維持基準規則を踏まえた必要な安全対策を行う。

再処理施設の安全対策に係る基本方針を以下に示す。詳細については別紙 3に示す。

再処理施設においては、高放射性廃液に伴うリスクが集中する高放射性廃液貯蔵場(HAW)とガラス固化技術開発施設(TVF)について最優先で安全対策を進める。

廃止措置計画用設計津波(以下「設計津波」という。)及び廃止措置計画 用設計地震動(以下「設計地震動」という。)に対して,両施設の健全性評価 を実施するとともに必要な安全対策を実施する。

竜巻,火山等の外部事象に対しても両施設の重要な安全機能(閉じ込め機能及び崩壊熱除去機能)を維持するために必要な対策を実施する。

両施設に関連する施設として、両施設の重要な安全機能(閉じ込め機能及び崩壊熱除去機能)を維持するために、事故対処設備(移動式発電機、エンジン付きポンプ等)を用いて必要な電力やユーティリティ(冷却に使用する水や動力源として用いる蒸気)を確保することとし、それらの有効性の確保に必要な対策(保管場所及びアクセスルートの信頼性確保、人員の確保等)を実施する。

高放射性廃液貯蔵場(HAW),ガラス固化技術開発施設(TVF)ガラス固化技術開発棟及びそれらに関連する施設以外の施設については、津波、地震、その他外部事象等に対してリスクに応じた安全対策を順次実施する。

(1) 設計地震動,設計津波,設計竜巻,火山事象

安全対策の検討に用いる設計地震動,設計津波,設計竜巻,火山事象について,以下のとおり定めた。

① 設計地震動の策定

「敷地内及び敷地周辺の地質・地質構造調査に係る審査ガイド」(平成25年6月19日 原管地発第1306191号 原子力規制委員会決定)及び「基準地震動及び耐震設計方針に係る審査ガイド」(平成25年6月19日 原管地発第1306192号 原子力規制委員会決定)に基づき設計地震動を策定する。

設計地震動の策定に当たり実施する地質・地質構造評価については,隣接する原子力科学研究所の JRR-3 原子炉施設での敷地周辺及び敷地近傍の地質・地質構造評価を参照する。

設計地震動の策定に当たり選定する敷地に大きな影響を及ぼすと予想される地震及び地震動については、JRR-3原子炉施設における地震動評価

のうち敷地周辺で想定される検討用地震を参照し,以下に示す地震学的 見地から想定することが適切な地震及び地震動を考慮している。

「敷地ごとに震源を特定して策定する地震動」

- F1断層~北方陸域の断層~塩ノ平地震断層による地震
- · 2011 年東北地方太平洋沖型地震
- ・ 茨城県南部の地震

「震源を特定せず策定する地震動」

- ・ 加藤ほか (2004) による応答スペクトル
- ・ 2004 年北海道留萌支庁南部の地震

以上を踏まえ,再処理施設における「敷地ごとに震源を特定して策定する地震動」及び「震源を特定せず策定する地震動」について,不確かさを 考慮した地震動評価を行い,設計地震動 Ss を策定した。

設計地震動の策定について別紙4に示す。

② 設計津波の策定

「基準津波及び耐津波設計方針に係る審査ガイド」(平成 25 年 6 月 19 日 原管地発第 1306193 号 原子力規制委員会決定)に基づき設計津波を策定する。

設計津波の策定に当たり選定する敷地に最も影響を及ぼす波源については、隣接する原子力科学研究所の JRR-3 原子炉施設での津波評価を参照し、以下に示す地震学的見地から想定することが適切な波源を考慮している。

- 2011 年東北地方太平洋沖型地震津波
- ・茨城県沖から房総沖に想定する津波
- ・ 海洋プレート内地震
- ・海域の活断層による地殻内地震
- ・陸上及び海底での地すべり並びに斜面崩壊
- 火山現象

以上を踏まえ,再処理施設に最も影響を与える津波波源を想定し,不確かさを考慮した津波評価を行い,設計津波を策定した。

設計津波の策定について別紙5に示す。

③ 設計竜巻の設定

「原子力発電所の竜巻影響評価ガイド」(平成 26 年 9 月 17 日原規技発第 1409172 号原子力規制委員会決定)に基づき,再処理施設の敷地で想定される基準竜巻・設計竜巻及びそれらから導かれる設計荷重に対して,防護措置その他の適切な措置を行う。

竜巻に対する防護措置を行うための設計竜巻の最大風速は,100 m/s とした。設計竜巻の設定等について別紙6に示す。

④ 火山事象の想定

「原子力発電所の火山影響評価ガイド」(平成 25 年 6 月 19 日原規技発第 13061910 号原子力規制委員会決定)に基づき影響を評価する。

想定する火山事象について別紙7に示す。

再処理施設への火山影響を評価するため、再処理施設に影響を及ぼし得る火山事象として設定した層厚 50 cm, 粒径 8.0 mm 以下, 密度 0.3 g/cm³ (乾燥状態) ~1.5 g/cm³ (湿潤状態) の降下火砕物に対し、防護措置その他適切な措置を行うよう検討する。

安全上重要な施設は、想定される火山事象が発生した場合においても 安全機能を損なわないものとし、火山影響評価を踏まえて、防護措置その 他の適切な措置を行うよう検討する。

(2) 再処理維持基準規則を踏まえた安全対策の実施内容

- 1) 火災等による損傷の防止
 - ・火災等による損傷の防止については、施設内に火災が発生した場合においても高放射性廃液貯蔵場(HAW)及びガラス固化技術開発施設(TVF)ガラス固化技術開発棟の重要な安全機能(閉じ込め機能及び崩壊熱除去機能)が維持できるよう対策を検討する。

2) 地震による損傷の防止

再処理施設の地震による損傷の防止に係る基本方針を以下に示す。

・高放射性廃液に伴うリスクが集中する高放射性廃液貯蔵場(HAW)及びガラス固化技術開発施設(TVF)ガラス固化技術開発棟については、工程洗浄や系統除染に伴う廃液処理も含めて一定期間使用することから、令和20年頃までの維持期間を想定し、設計地震動に対して重要な安全機能(閉じ込め機能及び崩壊熱除去機能)が損なわれることのないよう、以下の対策を講じる。

高放射性廃液貯蔵場(HAW)及びガラス固化技術開発施設(TVF)ガラス固化技術開発棟の建家並びにこれら建家に設置されている重要な安全機能を担う施設は、設計地震動に対して耐震性を確保する。

高放射性廃液貯蔵場(HAW)とガラス固化技術開発施設(TVF)ガラス固化技術開発棟に電力やユーティリティを供給する既設の恒設設備(外部電源及び非常用発電機,蒸気及び工業用水の供給施設)は,設計地震動に耐えるようにすることが困難であるが,安全機能喪失後の事故の事象進展が緩慢であることを踏まえ,代替策としての有効性を確認した上で事故対処設備として配備する設備等が使用できるよう必要な対策を実施する。有効性評価の結果については,変更申請を行い廃止措置計画に反映する。

・設計津波への対策として設ける施設(漂流物防護柵等)についても,

設計地震動に対して耐震性を確保するよう設計する。

・上記以外の施設については、今後とも安全かつ継続して施設を運用 し計画的に廃止措置を進めることができるよう、それぞれの耐震上 のリスクに応じた対策を講じることとする。

重要な安全機能(閉じ込め機能及び崩壊熱除去機能)を担う設備の間接支持構造物である高放射性廃液貯蔵場(HAW)の建家については、設計地震動による地震力が作用した際に建家支持地盤の接地圧について余裕が少なくなるおそれがあることから、確実に建家の耐震性を確保するために建家周辺の地盤改良工事を行い、地震時の建家の振動を抑制する対策を実施する。また、地盤改良工事の範囲に高放射性廃液貯蔵場(HAW)とガラス固化技術開発施設(TVF)ガラス固化技術開発棟を接続するT21トレンチを含めることにより、T21トレンチの耐震性も確保する。(別紙8参照)。

3) 津波による損傷の防止

再処理施設の津波による損傷の防止に係る基本方針を以下に示す。

- ・高放射性廃液に伴うリスクが集中する高放射性廃液貯蔵場(HAW)とガラス固化技術開発施設(TVF)ガラス固化技術開発棟については、工程洗浄や系統除染に伴う廃液処理も含めて一定期間使用することから、令和20年頃までの維持期間を想定し、設計津波に対して対策を講じることとする。具体的には、設計津波の敷地への浸入が想定されるものの高放射性廃液貯蔵場(HAW)及びガラス固化技術開発施設(TVF)ガラス固化技術開発棟の建家内へは浸入させない措置を講じるとともに、安全機能喪失後においても事故の事象進展が緩慢であることを踏まえ、有効性を確認した上で事故対処設備として配備する設備等が使用できるよう必要な対策を実施する。設計津波により想定される漂流物から高放射性廃液貯蔵場(HAW)及びガラス固化技術開発施設(TVF)ガラス固化技術開発棟を防護するための防護柵を設置する。有効性評価の結果については、変更申請を行い廃止措置計画に反映する。
- ・上記以外の施設については、今後とも安全かつ継続して施設を運用 し計画的に廃止措置を進めることができるよう、リスクに応じた対 策を講じることとする。
- ・設計津波による津波高さは、高放射性廃液貯蔵場(HAW)で「東京湾平均海面」(以下「T.P.」という。)+14.2 m, ガラス固化技術開発施設(TVF)ガラス固化技術開発棟でT.P.+12.8 mと評価している。

- 4) 外部からの衝撃による損傷の防止
 - ① 国内外の文献等から自然現象による事象を抽出し、再処理施設の立地及び周辺環境を踏まえて、再処理施設の位置、構造及び設備の基準に関する規則の解釈第9条に示される自然事象を含め再処理施設の安全性に影響を与える可能性のある事象は主に竜巻、森林火災及び火山であり対策は以下のとおりである。

(a) 竜巻

竜巻によって発生を想定する飛来物(設計飛来物)として、プラントウォークダウン等に基づき 135 kg の鋼製材を選定した。設計竜巻から防護する設備は高放射性廃液貯蔵場(HAW)及びガラス固化技術開発施設(TVF)ガラス固化技術開発棟の重要な安全機能(閉じ込め機能及び崩壊熱除去機能)を担う設備とし、設計竜巻の風圧及び飛来物に対する影響を評価した。

建家内に配置されている設備については、建家外壁を防護の外殻として期待し、風圧及び設計飛来物に対して建家外壁の強度が確保できることから、健全性が維持できることを確認した。また、既存の窓・ 扉等の開口部については設計飛来物が侵入しないよう、必要な措置を講ずる。

建家屋上に配置されている設備(二次冷却水系の冷却塔等)については、設計竜巻の風圧には耐え得るものの、設計飛来物の衝突時には機能喪失するおそれがあること、屋上には設計飛来物から防護するための設備を新たに設置するための場所がないこと、安全機能喪失後の事故の事象進展が緩慢であること等から、これらの設備が設計竜巻によって機能喪失した場合には有効性を確認した上で事故対処設備により当該設備の機能を代替することとした。有効性評価の結果については、変更申請を行い廃止措置計画に反映する。

(b) 森林火災

再処理施設周辺の植生調査,気象条件等に基づき森林火災シミュレーションを実施し,高放射性廃液貯蔵場(HAW)及びガラス固化技術開発施設(TVF)ガラス固化技術開発棟の建家外壁の温度及び火災時のばい煙の影響について評価した。評価の結果,当該建家外壁コンクリート等の温度は許容温度以下となり,内部に配置されている重要な安全機能(閉じ込め機能及び崩壊熱除去機能)を担う設備の健全性が維持できることを確認した。ばい煙による影響についても,施設内の人的活動が阻害されるおそれがない濃度に収まることを確認した。

また,火災時の影響防止を確実なものとするため,当該施設周辺 に適切な幅の防火帯を設けるとともに,自衛消防による延焼防止活 動を行える体制を確保する。

なお、森林火災により、高放射性廃液貯蔵場(HAW)及びガラス固化技術開発施設(TVF)ガラス固化技術開発棟に外部から電力・ユーティリティ等を供給している施設の機能が喪失した場合には、事故の事象進展が緩慢であることを踏まえ、有効性を確認した上で事故対処設備により当該施設の機能を代替することとした。有効性評価の結果については、変更申請を行い廃止措置計画に反映する。

(c) 火山

降下火砕物から防護する設備は高放射性廃液貯蔵場(HAW)及びガラス固化技術開発施設(TVF)ガラス固化技術開発棟の重要な安全機能(閉じ込め機能及び崩壊熱除去機能)を担う設備とし、それらの設備を内部に設置している建家の屋上スラブに降下火砕物が堆積した場合の荷重を評価した。また、降下火砕物が建家換気空調系へ与える影響についても評価した。

評価の結果、当該建家の屋上スラブは降下火砕物の堆積と積雪を 重畳させた保守的な状態においても許容荷重以下となり、建家内部 にある設備に影響が生じないことを確認した。なお、降灰予想等に 基づいて除灰作業等を行う。また、降下火砕物の建家換気空調系へ の影響についても適切なフィルタの交換作業等の措置により防止で きることを確認した。

なお、火山事象により、高放射性廃液貯蔵場(HAW)及びガラス固化技術開発施設(TVF)ガラス固化技術開発棟に外部から電力・ユーティリティ等を供給している施設の機能が喪失した場合には、事故の事象進展が緩慢であることを踏まえ、有効性を確認した上で事故対処設備により当該施設の機能を代替することとした。有効性評価の結果については、変更申請を行い廃止措置計画に反映する。

(d) 竜巻, 森林火災及び火山の影響以外の自然現象

竜巻,森林火災及び火山の影響以外の自然現象による損傷の防止については,高放射性廃液貯蔵場(HAW)及びガラス固化技術開発施設(TVF)ガラス固化技術開発棟の重要な安全機能(閉じ込め機能及び崩壊熱除去機能)が維持できるよう対策を検討する。

(e) 異種の自然現象の重畳及び自然現象と事故の組合せ

抽出された自然現象については、その特徴から組合せを考慮する。 事故については、設備や系統における内的な事象を起因とするも のに対しては、外部からの衝撃である自然現象との因果関係が考え られないこと及び自然現象の影響と時間的変化による事故への発展 が考えられないことから、自然現象と事故の組合せは考慮しない。

② 安全機能を有する施設は、周辺監視区域に隣接する地域に事業所、鉄道、道路その他の外部からの衝撃が発生するおそれがある要因がある場合において、事業所における火災又は爆発事故、危険物を搭載した車両、船舶又は航空機の事故その他の敷地及び敷地周辺の状況から想定される事象であって人為によるもの(故意によるものを除く。)により再処理施設の安全性が損なわれないよう、廃止措置段階に応じた措置を行う。

なお、人為事象の抽出は、国内外の文献等から再処理施設の立地 及び周辺環境を踏まえて再処理施設の安全性に影響を与える可能性 のある事象を選定する。

(a) 外部火災(森林火災を除く。)

敷地周辺にある産業施設の火災爆発として、10km範囲に存在するもののうち最大の貯蔵量を持つ石油類貯蔵施設の火災及び高圧ガス貯蔵施設の爆発についての影響評価を実施した。評価の結果、これらの産業施設の火災においても、高放射性廃液貯蔵場(HAW)及びガラス固化技術開発施設(TVF)ガラス固化技術開発棟の建家外壁コンクリート等の温度は許容温度以下となり、内部に配置されている重要な安全機能(閉じ込め機能及び崩壊熱除去機能)を担う設備の健全性が維持できることを確認した。ばい煙による影響についても、施設内の人的活動が阻害されるおそれがない濃度に収まることを確認した。高圧ガス施設の爆発時の爆風についても、十分な離隔距離があるため影響がないことを確認した。

再処理敷地内への航空機墜落による火災について、落下確率が10⁻⁷ 回/施設・年以上になる範囲のうち、影響が最も大きくなる地点に墜落した場合を想定した評価を実施した。評価の結果、最も厳しい影響を与える航空機の墜落を考慮しても、高放射性廃液貯蔵場(HAW)及びガラス固化技術開発施設(TVF)ガラス固化技術開発棟の建家外壁コンクリート等の温度は許容温度以下となり、内部に配置されている重要な安全機能(閉じ込め機能及び崩壊熱除去機能)を担う設備の健全性が維持できることを確認した。航空機燃料の火災によって生じる有毒ガスによる影響についても、施設内の人的活動が阻害されるおそれがない濃度に収まることを確認した。

(b) 航空機墜落, 爆発(敷地周辺にある産業施設の火災爆発等), 外部 火災等の火災以外の人為による事象

航空機墜落, 爆発(敷地周辺にある産業施設の火災爆発等), 外部火

災等の火災以外の人為による事象による損傷の防止については、高 放射性廃液貯蔵場(HAW)及びガラス固化技術開発施設(TVF)ガラス 固化技術開発棟の重要な安全機能(閉じ込め機能及び崩壊熱除去機 能)が維持できるよう対策を検討する。

5) 再処理施設への人の不法な侵入等の防止

① 人の不法な侵入の防止

再処理施設のうち、核燃料物質等を取り扱う建家の外側に周辺防護区域及び立入制限区域を設定し、それぞれの区域境界に十分な高さを有した鋼製の人の不法な侵入が困難な構造のフェンスを設置し出入口を施錠する。

また、再処理施設への人の立ち入りは立入制限区域境界に設置した出入管理所の警備員が入域資格を確認した上で立ち入りさせる。 なお、その他の出入口から立ち入りさせる場合は、警備員により出入管理所における措置と同等の確認を行った上で立ち入りさせる。

② 不正な物件の持込みの防止

再処理施設に不正に爆発性又は易燃性を有する物件その他人に危害を与え、又は他の物件を損傷するおそれがある物件が持ち込まれることがないように、立入制限区域境界の出入管理所に設置する持込検査装置又は警備員による荷物の外観点検及び開封点検により不正な物件の持込みを防止する。また、車両についても荷物の点検及び車両点検を行うことにより不正な物件の持込みを防止する。なお、その他の出入口から物件を持ち込む場合は、警備員による荷物の外観点検及び開封点検により不正な物件の持込みを防止する。

③ 不正アクセスの防止

再処理施設の情報システムは、核燃料物質等を取り扱う建家のうち、安全上重要な施設の機器・構築物に接続されたシステム、施設外へのデータ伝送等に係るシステム及び核物質防護システムで構成し、これらのシステムに対する電気通信回線を通じた不正アクセス行為を防止する設計とする。

(a) 外部からの不正アクセスの防止

電気通信回線を通じた外部からの不正アクセス行為を受けること がないよう、外部と物理的に接続しない設計とする。

(b) 内部からの不正アクセスの防止

内部における不正アクセスを防止するため、対象とする情報システムに関するアクセス管理、調達管理及び電子媒体管理を行う。

アクセス管理については、当該システムを設置する制御盤の施錠 により管理を行う。

電子媒体の管理は、電子媒体によるウイルス感染を防止するため、

使用前にウイルスチェックを行う。

また,電子媒体によりプログラムの変更を実施する場合には,調 達管理として調達プロセスにセキュリティ要件を入れる。

なお、上記の(a)及び(b)の対策は、不正アクセスが行われる おそれがある場合又は行われた場合に迅速に対応できるよう情報シ ステムセキュリティに関する計画を定める。

④ 核燃料物質等の不法な移動の防止

敷地内の人による核燃料物質等の移動については、所定の手続に 基づき承認を得てから移動を行うことにより、核燃料物質等の不法 な移動を防止する。

⑤ 手順等

- (a) 再処理施設のうち核燃料物質等を取り扱う建家に対する人の不 法な侵入及び不正な物件の持込みを防止するため、周辺防護区 域及び立入制限区域のフェンス設置、出入口の施錠管理、巡視及 び出入管理所における人、荷物及び車両の点検を行うための手 順を整備する。出入管理所における点検及び検査に係る業務に ついては、手順を作成し、それに基づき実施する他、定期的に教 育及び訓練を実施する。
- (b) 再処理施設のうち,周辺防護区域,立入制限区域境界のフェンス, 出入管理所及び出入管理所の持込検査装置は,保守及び修理に より機能を維持する。
- (c) 再処理施設のうち核燃料物質等を取り扱う建家の周辺に設置された立入制限区域の境界及び区域内を定期的に巡視する。 上記の対策については、核物質防護対策の一環として実施する。

6) 再処理施設内における溢水による損傷の防止

- ・再処理施設内における溢水による損傷の防止については、高放射性 廃液貯蔵場(HAW)及びガラス固化技術開発施設(TVF)ガラス固化技 術開発棟の重要な安全機能(閉じ込め機能及び崩壊熱除去機能)が維 持できるよう対策を検討する。
- 7) 再処理施設内における化学薬品の漏えいによる損傷の防止 再処理施設内における化学薬品の漏えいによる損傷の防止について は,高放射性廃液貯蔵場(HAW)及びガラス固化技術開発施設(TVF)ガラ ス固化技術開発棟の重要な安全機能(閉じ込め機能及び崩壊熱除去機能) が維持できるよう検討する。
- 8) 安全機能を有する施設

安全機能を有する施設のポンプその他の機器又は配管の損壊に伴う

飛散物による損傷については、高放射性廃液貯蔵場(HAW)及びガラス固化技術開発施設(TVF)ガラス固化技術開発棟の重要な安全機能(閉じ込め機能及び崩壊熱除去機能)が維持できるよう対策を検討する。

9) 安全上重要な施設

安全上重要な施設に係る安全対策に関しては,高放射性廃液貯蔵場 (HAW)及びガラス固化技術開発施設(TVF)ガラス固化技術開発棟の重要な安全機能(閉じ込め機能及び崩壊熱除去機能)に係る施設・設備の維持について対策を検討する。

10) 制御室等

高放射性廃液貯蔵場(HAW)及びガラス固化技術開発施設(TVF)ガラス固化技術開発棟の重要な安全機能(閉じ込め機能及び崩壊熱除去機能)が維持できるよう対策を検討する。

11) 保安電源設備

保安電源設備については、高放射性廃液貯蔵場(HAW)及びガラス固化技術開発施設(TVF)ガラス固化技術開発棟の重要な安全機能(閉じ込め機能及び崩壊熱除去機能)が維持できるよう対策を検討する。

12) 通信連絡設備

通信連絡設備については、高放射性廃液貯蔵場(HAW)及びガラス固化技術開発施設(TVF)ガラス固化技術開発棟の重要な安全機能(閉じ込め機能及び崩壊熱除去機能)が維持できるよう対策を検討する。

(3) 重大事故等対処施設

事故対処の有効性評価においては、現状配備している緊急安全対策を含む可搬型設備等により、高放射性廃液貯蔵場(HAW)及びガラス固化技術開発施設(TVF)ガラス固化技術開発棟に係る重要な安全機能(閉じ込め機能及び崩壊熱除去機能)を回復させる対応を行うものであり、訓練を通じて具体的な操作手順に要する時間、体制、対策に要する資源(水源、燃料及び電源)等を確認する。

特に,津波襲来後の事故対処の実効性の観点からは,津波漂流物の影響等を考慮した作業環境を想定して評価を行う方針である。

有効性評価の主要な実施項目について、以下に示す。

有効性評価の結果については,変更申請を行い廃止措置計画に反映 する。

① 事故の抽出

・高放射性廃液に伴うリスクが集中する高放射性廃液貯蔵場(HAW)と、これに付随して廃液処理を含めて一定期間使用するガラス固化技術開発施設(TVF)ガラス固化技術開発棟について、重要な安全機能(閉じ込め機能及び崩壊熱除去機能)を維持するために必要な設備に対し、事故の発生を仮定する設備を網羅的に特定する。特定に当たっては、事故の同時発生を考慮する。

② 事象進展

- ・想定する地震, 津波等の事象において, 機能維持可能な設備の特定及 び機能喪失する範囲を現状の設備状況をもとに明確にする。
- ・崩壊熱除去機能喪失に伴い高放射性廃液が沸騰に至るまでの時間余裕を評価し事象進展を明らかにする。発生防止対策及び事故の拡大 を防止する対策を行う時期を明確にする。
- ・事象進展の評価においては、高放射性廃液の核種組成及び崩壊熱密 度等の評価条件の不確かさによる影響を考慮する。

③ 発生防止策, 拡大防止策及び影響緩和策等の具体的対応フロー

- ・対策の実効性の観点から、津波漂流物の影響等を考慮した作業環境 を想定した対応フローを明確にする。
- ・操作手順は事故の進展状況に応じて、対策の実施に必要な時間、組織体制(技術支援組織及び運営支援組織)、対応要員数、要員の招集方法、使用機材、対策に必要な資源(水源、燃料及び電源)、アクセスルートの確保手段等を明確にする。

④ 有効性評価

- ・事故の進展状況に応じて、対策の実施に必要な時間、組織体制(技術支援組織及び運営支援組織)、対応要員数、要員の招集方法、使用機材、対策に必要な資源(水源、燃料及び電源)、アクセスルートの確保手段等の有効性を訓練により確認する。訓練では、各操作に要する対処時間の積み上げ等をタイムチャートとして作成し確認する。
- ・事故対処設備の保管場所は地震,津波の影響を受けにくい場所に位 置的分散等を考慮して保管されていることを確認する。
- 事故時において作業現場及び緊急時対策所での通信連絡に必要な設備が整備されていることを確認する。

⑤ その他の安全機能維持への対応

事故対処として実施する上記対応のほか,以下の項目に対し現状配備している緊急安全対策等の設備による安全機能維持を図る。

[津波に対する安全機能維持]

- ・ガラス固化技術開発施設(TVF)ガラス固化技術開発棟建家外壁貫通 配管損傷時のバルブ閉止操作を行うための手順等を整備し訓練によ り実効性を確認する。
- ・屋外監視カメラの監視機能維持のための構成部品の交換等の操作に ついて、手順等を整備し訓練により実効性を確認する。

[漏えいに対する安全機能維持]

・漏えい液の回収等の操作を行うための手順等を整備し、操作の実効性を訓練により確認する。

[水素掃気に対する安全機能維持]

・水素掃気を行うための設備の回復操作においては、排風機を起動し 換気機能の回復が可能であり、手順等を整備し、操作の実効性を訓練 により確認する。

⑥ 今後の安全対策工事に伴う設備状況の反映

今後計画している主な安全対策工事を以下に示す。これらの対策工事を含め設備状況の変化を踏まえ,事故対処の操作手順,作業環境条件等へ反映する。特に,可搬型設備の保管場所として運用しているプルトニウム転換技術開発施設管理棟駐車場の地盤改良工事の完了後に,一連の安全対策工事の結果を踏まえタイムチャートを含めた最終的な有効性評価を実施する。

- ・崩壊熱除去機能喪失に係る対策 (施設内対策工事 (高放射性廃液貯蔵場(HAW)及びガラス固化技術開発施設(TVF))
- ・ガラス固化技術開発施設(TVF)ガラス固化技術開発棟ガラス固化体 保管ピットの強制換気のための対策工事
- ・津波漂流物防護柵の設置工事
- ・プルトニウム転換技術開発施設管理棟駐車場の地盤改良工事

⑦ 崩壊熱除去機能の回復操作に失敗した場合の放出量

- ・崩壊熱除去機能の回復操作に失敗し放射性物質が外部放出に至った 場合の放出量を評価する。
- ・放出される放射性物質の濃度及び放射線量を監視, 測定, 記録するための必要な手順を整備する。

5.1.3 性能維持施設の設備、その性能、その性能を維持すべき期間

廃止措置期間中に性能及び機能を維持すべき設備・機器等は、廃止措置の 基本方針に基づき、周辺公衆及び放射線業務従事者の被ばく低減を図ると ともに、使用済燃料の貯蔵のための管理、工程洗浄、系統除染、施設の汚染 状況調査、解体作業及び核燃料物質によって汚染された物の廃棄作業等の 各種作業の実施に対する安全の確保のために、必要な期間、所要の性能及 び必要な機能を維持管理する。

廃止措置期間中の工事の進捗状況に応じて段階的に性能を変更する必要がある場合には、要求されている機能に支障を及ぼさないこととする。

廃止措置のために導入する装置については、漏えい及び拡散防止対策、被 ばく低減対策、事故防止対策の安全確保のための機能が要求を満足するよ う、適切な設計を行うとともに、製作・施工の適切な時期に試験又は検査 を実施し、必要な機能を満足していることを確認する。

これらの設備・機器等の性能については、定期的に点検等で確認することとし、経年変化等による性能低下又はそのおそれのある場合には、必要に応じて所定の手続を経て必要な機能を満足するよう補修等を行う。これらの維持管理に関しては、再処理施設保安規定に施設定期自主検査として、要求される機能、点検項目、点検頻度及び維持すべき期間を定めてこれに基づき、再処理施設保安規定に定める体制で実施する。

主な設備・機器等の維持管理の基本的な考え方は、下記のとおりである。

- (1) 放射性物質を内包する系統及び機器を収納する建家及び構築物については,管理区域解除までの期間,閉じ込め及び遮蔽の機能を維持管理する。
- (2) 放射性物質を内包する系統及び機器については、系統除染が完了するまでの期間、閉じ込めの機能を維持管理する。
- (3)使用済燃料の受入れ施設及び貯蔵施設については、使用済燃料を搬出するまでの期間,燃料を取り扱う設備及び臨界防止,遮蔽等の機能を維持管理する。
- (4) 放射性廃棄物の廃棄施設については,管理区域解除までの期間,廃棄物処理に係る機能及び廃棄物貯蔵に係る機能を維持管理する。
- (5)核燃料物質の貯蔵施設については、核燃料物質を搬出し、管理区域解除するまでの期間、製品を取り扱う機能、製品を貯蔵する機能及び臨界防止機能を維持管理する。
- (6)計測制御系統施設及び安全保護回路については、系統除染が完了するまでの期間、測定、制御、異常な状態の検知機能を維持管理する。
- (7)放射線管理施設については、管理区域解除までの期間,放射線を監視する 機能を維持管理する。
- (8) 換気設備については、管理区域解除までの期間、閉じ込め機能を維持管理する。
- (9) ユーティリティの供給設備については、供給先の管理区域解除までの期間、ユーティリティの供給に係る機能を維持管理する。
- (10) その他の安全確保上必要な設備については、それぞれの設備に要求される機能を維持管理する。

上記の設備・機器等の機能維持のため、設計時点で定期的な点検等に伴い

交換することが想定され、交換作業において安全機能に影響を及ぼさず、 当該部品に求められる機能に変更がなく、交換前の部品等と同性能である もの(日本工業規格、一般市販品の規格等により同等の性能であることを 確認できるもの)の場合、再処理施設保安規定に定める管理の方法に基づ き部品交換等を実施する。

5.2 廃止措置における安全対策

廃止措置における安全対策は、過去のトラブル等の経験を十分踏まえた上で、以下の放射性物質の施設内外への漏えい防止及び拡散防止対策、被ばく低減対策並びに事故防止対策を講じることを基本とする。これらの安全確保に係る事項を確実に実施するため、廃止措置計画に係る業務計画書を策定し、その管理の中で計画、実施、評価及び改善を行うこと、廃止措置計画の実施に係る重要事項を再処理施設安全専門委員会の審議事項とすることを再処理施設保安規定に定め、これに基づき工程洗浄、系統除染、機器の解体撤去等を行う。なお、これらの管理を充実させるため、廃止措置の進捗に応じて、再処理施設保安規定を変更する。

5.2.1 放射性物質の漏えい及び拡散防止対策

気体状の放射性物質に対して,既存の建家・構造物及び換気設備により施設外への漏えい及び拡散防止機能を維持するとともに,この機能が損なわれないように解体の工法及び手順を計画する。汚染のある施設・設備を解体撤去する場合など,必要に応じて汚染拡大防止囲い,局所排気フィルタ及び局所排風機等の施設・設備外への拡散防止機能を持った装置を導入する。

液体状の放射性物質が発生する間は、漏えい防止機能を維持するととも に、この機能が損なわれないように解体の工法及び手順を計画する。

なお、施設外への放射性物質の漏えい及び拡散防止対策に係る管理が適切に行われていることを確認するため、廃止措置時においても再処理施設からの放射性物質の放出管理に係る排気モニタリング、排水モニタリング及び周辺環境に対する放射線モニタリングを継続して実施する。

5.2.2 放射線業務従事者の被ばく低減対策

機器解体に当たっては、対象範囲の表面密度、線量率及び空気中の放射性物質濃度を考慮して、下記の措置を講じることにより、合理的に達成可能な限り被ばく低減に努める。

外部被ばく低減のため、機器解体の着手前に系統除染を実施する。また、 放射能レベルの高い区域で作業を行う場合は、必要に応じて遠隔操作装置、 遮蔽等を用いる。

対象範囲の汚染状況等については、事前に確認を行い、その結果に基づ

き,放射性物質の拡散防止対策,被ばく低減対策等の安全確保対策を講じて解体を行うことにより,環境への放射性物質の放出抑制及び放射線業務従事者の被ばく低減に努める。

内部被ばく防止のため、放射性粉じんの発生及び拡散を抑制する工法を 採用する。放射能レベルの高い区域で作業を行う場合は、汚染拡大防止囲 い、局所排気フィルタ及び局所排風機を設置するなどにより施設内の汚染 拡大防止を図るとともに、マスク等の防護具等を用いる。

作業の実施に当たっては、必要に応じて目標線量を設定し、実績線量と比較し改善策を検討するなどして、被ばく低減に努める。また、作業区域内の放射線環境に応じてサーベイメータ等により線量率を測定するとともに、線量率が著しく変動するおそれのある作業は、可搬式エリアモニタ装置等を用いて作業中の線量率を監視する。

放射能レベルの比較的高い汚染物を取り扱う遠隔操作装置等の導入に当たっては、放射線業務従事者の被ばく低減を考慮して、作業区域内の空間線量率に応じて適切に遮蔽を行う。

5.2.3 事故防止対策

廃止措置中の過失,機械又は装置の故障による人的災害,又は周辺公衆への影響を防止するため,事前に作業における危険性等を調査し,必要な安全対策を講じる。遠隔操作装置等の導入に当たっては,汚染物の落下防止対策及び衝突防止対策を講じる。

地震, 台風等の自然事象に備え, 内包する有意な汚染を除去するまで既存 の建家を維持する。

火災等の人為事象に対する安全対策として、既存の消火設備等を維持するとともに難燃性の資機材の使用、可燃性物質の保管及び可燃性ガスを使用する場合の管理の徹底、重量物に適合した揚重装置の使用等の措置を講じる。

事故発生時には,事故拡大防止等の措置を講じるとともに,早期の復旧に努める。

5.2.4 労働災害防止対策

一般労働災害防止対策として,高所作業対策,有害物対策,感電防止対策, 粉じん障害対策,閉所・酸欠防止対策,振動対策,騒音対策等を講じる。な お,作業に当たっては,周辺設備に影響を及ぼさないよう作業方法を計画 する。

5.2.5 廃止措置のために導入する装置の安全設計

廃止措置のために導入する装置は、機能等に応じて日本工業規格等の規格及び規準に準拠するとともに必要に応じて放射性物質の漏えい及び拡散

防止対策,放射線業務従事者の被ばく低減対策,事故防止対策の安全確保対策を講じる。

6. 廃止措置に係る品質マネジメントシステム

廃止措置期間中における品質マネジメントシステム活動は,原子炉等規制 法第50条第1項に基づく再処理施設保安規定において,再処理規則第8条 の3に基づいた理事長をトップマネジメントとする品質マネジメント計画を 定め,保安規定及び品質マネジメント計画書並びにその関連文書により廃止 措置に関する保安活動の計画,実施,評価及び改善の一連のプロセスを明確 にし,これらを効果的に運用することにより,原子力安全の確保・維持・向 上を図る。

また、廃止措置期間中における品質マネジメント活動は、廃止措置における安全の重要性に応じた管理を実施する。

表 1-7 に示す廃止措置期間中の性能維持施設その他の設備の保守等の廃止措置に係る業務は、この品質マネジメント計画の下で実施する。

以上

表 1-1 主要な廃止措置対象施設(1/16)

建家名称	施設区分	設備等の区分	設備名称
分離精製工	使用済燃料	受入れ施設	天井クレーン設備
場(MP)	の受入れ施		カスク冷却設備
	設及び貯蔵		除染設備
	施設		燃料取出し設備
			燃料移動設備
			燃料汚染検査,除染設備
			燃料一時貯蔵設備
		貯蔵施設	燃料取扱操作設備(貯蔵プール)
			燃料貯蔵設備
			燃料移動設備
			燃料取扱操作設備(濃縮ウラン移動プール)
		プール水処理設備	貯水ピット
			廃液貯槽
			貯蔵プール水処理設備
			熱交換器
			移動プール・機械処理プール水処理設備
	再処理設備	せん断処理施設	燃料移動設備
	本体**1		せん断装置
			天井クレーン (濃縮ウラン機械処理セル)
			マニプレータ類 (濃縮ウラン機械処理セル)
			燃料装荷装置
			ハル取扱設備
			天井クレーン (濃縮ウラン溶解槽装荷セル)
			マニプレータ (除染保守セル)
			廃棄物取扱設備
		溶解施設	濃縮ウラン溶解槽
			スワーフタンク
			パルスフィルタ (放射性配管分岐室)
			パルスフィルタ (分離第1セル)
			洗浄液受槽
			溶解槽溶液受槽

※1:再処理設備本体とは、せん断処理施設、溶解施設、分離施設、精製施設、脱硝施設、酸及び溶媒の回収施設を示す。

表 1-1 主要な廃止措置対象施設(2/16)

建家名称	施設区分	設備	#等の区分	設備名称
分離精製工	再処理設備	溶解施設		調整槽
場(MP)	本体			給液槽
		分離施設	分離第1サイクル	高放射性廃液中間貯槽
				分離第1抽出器
				希釈剤洗浄器
				分離第2抽出器
			分離第2サイクル	分離第3抽出器
				分離第4抽出器
				調整槽
				中間貯槽
				分離第 5 抽出器
			リワーク	受槽
				溢流受槽
				中間貯槽
				溶媒受槽
				廃溶媒受槽
				プルトニウム溶液受槽
				溢流溶媒受槽
		精製施設	プルトニウムの	調整槽
			精製系	中間貯槽
				酸化塔
				空気吹込塔
				プルトニウム精製第1抽出器
				プルトニウム精製第2抽出器
				溶媒貯槽
				中間貯槽(プルトニウム溶液濃縮系)
				希釈槽
				プルトニウム溶液蒸発缶
				プルトニウム濃縮液受槽
				循環槽
				プルトニウム濃縮液取出し、受入れ設備

表 1-1 主要な廃止措置対象施設 (3/16)

建家名称	施設区分	設備	請等の区分	設備名称
分離精製工	再処理設備	精製施設	ウランの精製系	調整槽
場(MP)	本体			中間貯槽(ウラン精製セル)
				ウラン精製第1抽出器
				ウラン精製第2抽出器
				中間貯槽(ウラン濃縮脱硝室)
				ウラン溶液蒸発缶(第1段)
				濃縮液受槽
				希釈槽
				給液槽
				一時貯槽
		脱硝施設		ウラン溶液蒸発缶(第2段)
				濃縮液受槽
				脱硝塔
				製品積出し設備
				重量計
				三酸化ウラン容器接続器具
				三酸化ウラン取出し装置
		酸及び溶媒	酸回収施設	希釈剤洗浄器
		の回収施設		希釈剤受槽
				酸回収中間貯槽
				酸回収蒸発缶
				デミスタ
				酸回収精留塔
				凝縮器
				冷却器
				中間貯槽
			溶媒回収施設(分	第1溶媒洗浄器
			離第 1 サイクル	希釈剤洗浄器
			系)	溶媒洗浄廃液中間貯槽

表 1-1 主要な廃止措置対象施設(4/16)

建家名称	施設区分	設備	帯等の区分	設備名称
分離精製工	再処理設備	酸及び溶媒	溶媒回収施設(分	溶媒貯槽
場(MP)	本体	の回収施設	離第 1 サイクル	沈降槽
			系)	フィルタ
			溶媒回収施設(分	希釈剤洗浄器
			離第 2 サイクル	溶媒洗浄廃液中間貯槽
			系)	溶媒貯槽
				第 2 溶媒洗浄器
				フィルタ
			溶媒回収施設(ウ	第3溶媒洗浄器
			ラン精製サイク	溶媒貯槽
			ル系)	フィルタ
	製品貯蔵施	プルトニウム	ム製品の貯蔵	プルトニウム製品貯槽
	設			プルトニウム製品取出し設備
	放射性廃棄	気体廃棄物	槽類換気系(燃料	酸吸収塔
	物の廃棄施	の廃棄施設	溶解槽からの廃	洗浄塔 溶解廃気用
	設		気)	フィルタ
			槽類換気系(燃料	フィルタ
			せん断装置から	 洗浄塔 せん断廃気用
			の廃気)	
			槽類換気系(高放 ************************************	洗浄塔
			射性廃液貯槽か	フィルタ
			らの廃気)	
				酸吸収塔(酸回収セル)
			射性廃液蒸発缶, プルトニウム濃	空気吹込塔(酸回収セル)
			アルドーリム優 厚溶液処理工程	Dail of (27)
			などからの廃気)	酸吸収塔(ウラン濃縮脱硝室)
			3.2. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7.	洗浄塔(溶解オフガス処理セル)
			カル協定で	フィルタ
			セル換気系	フィルタ
			廃ガス貯蔵装置	廃ガス貯槽

表 1-1 主要な廃止措置対象施設(5/16)

建家名称	施設区分	設備等の区分		設備名称
分離精製工	放射性廃棄	液体廃棄物	高放射性の液体	高放射性廃液蒸発缶
場(MP)	物の廃棄施	の廃棄施設	廃棄物	高放射性廃液貯槽
	設			中間貯槽
			低放射性の液体	中間貯槽
			廃棄物	十月月月1宵
	その他再処	濃縮ウラン溶解槽の遠隔補修		濃縮ウラン溶解槽
	理設備の附	技術開発設備		·
	属施設			遠隔補修・検査装置
	計測制御系	安全保護回路	文	濃縮ウラン溶解槽, ウラン溶液蒸発缶 (第1段),
	統施設			プルトニウム溶液蒸発缶, 高放射性廃液蒸発缶,
				脱硝塔,分離,精製及び溶媒回収
		核計装設備		アルファ線モニタ
				中性子線モニタ

表 1-1 主要な廃止措置対象施設(6/16)

建家名称	施設区分	設備等の区分	設備名称
ウラン脱硝	再処理設備	脱硝施設	UNH 受槽
施設(DN)	本体		UNH 貯槽
			蒸発缶(第2段)
			濃縮液受槽
			脱硝塔
			酸吸収塔
			U03受槽
			オーバーサイズ受槽
			計量台
			溶解槽
	計測制御系	安全保護回路	脱硝塔
	統施設		

建家名称	施設区分	設備等の区分	設備名称
ウラン貯蔵	製品貯蔵施	ウラン製品の貯蔵	
所(UO ₃)	設		ウラン製品貯蔵設備
第二ウラン			
貯 蔵 所			ウラン製品貯蔵設備
$(2U0_3)$			
第三ウラン			
貯 蔵 所			ウラン製品貯蔵設備
(3UO ₃)			

表 1-1 主要な廃止措置対象施設 (7/16)

建家名称	施設区分	設備等の区分	設備名称
プルトニウ	その他再処	プルトニウム転換技術開発施	硝酸プルトニウム受入計量槽
ム転換技術	理設備の附	設	硝酸プルトニウム貯槽
開発施設	属施設		混合槽
(PCDF)			混合液貯槽
			硝酸ウラニル受入計量槽
			硝酸ウラニル貯槽
			硝酸プルトニウム給液槽
			ウラン受槽
			混合液給液槽
			脱硝加熱器
			焙焼還元炉
			粉砕機
			混合機
			廃液受入槽
			廃液蒸発缶
			中和沈殿槽
			安全保護回路(焙焼還元炉,窒素-水素混合
			ガスの供給系)

表 1-1 主要な廃止措置対象施設(8/16)

建家名称	施設区分	設備等の区分	設備名称
クリプトン	その他再処	クリプトン回収技術開発施設	原料ガス中間貯槽
回収技術開	理設備の附		反応器
発施設(Kr)	属施設		水吸着器
			ウォームコンテナ
			炭酸ガス吸着器
			キセノン吸着器
			コールドコンテナ
			主精留塔
			クリプトン精留塔
			キセノン液化塔
			キセノン精留塔
			中間槽
			クリプトン貯蔵シリンダ
			キセノン貯蔵シリンダ
			廃液貯槽
			クリプトン固定化試験設備

表 1-1 主要な廃止措置対象施設(9/16)

建家名称	施設区分	設備等	の区分	設備名称
高放射性廃	放射性廃棄	気体廃棄物の	高放射性廃液	洗浄塔
液貯蔵場	物の廃棄施	廃棄施設	貯蔵場の廃気	フィルタ
(HAW)	設	液体廃棄物の	高放射性の液	高放射性廃液貯槽
		廃棄施設	体廃棄物	中間貯槽
				中間熱交換器
				冷却塔

建家名称	施設区分	設備等の区分	設備名称
ガラス固化	その他再処	ガラス固化技術開発施設	受入槽
技術開発施	理設備の附		回収液槽
設(TVF)	属施設		濃縮器
			濃縮液槽
			濃縮液供給槽
			溶融炉
			中放射性廃液蒸発缶
			台車
			溶接装置
			クレーン設備 (固化セル)
			マニプレータ類
			クレーン設備 (搬送セル)
			検査設備
			保管ピット
			中放射性廃液貯槽
			低放射性廃液第一貯槽
			低放射性廃液第一蒸発缶
			固化セル換気系設備
			槽類換気系設備
			冷却塔
			安全保護回路(固化セル)

表 1-1 主要な廃止措置対象施設(10/16)

建家名称	施設区分	設備等の区分		設備名称
高放射性固	放射性廃棄	固体廃棄物の	高放射性の固	ハル貯蔵庫
体廃棄物貯	物の廃棄施	廃棄施設	体廃棄物	予備貯蔵庫
蔵庫(HASWS)	設			汚染機器類貯蔵庫
				クレーン
				フィルタ

建家名称	施設区分	設備等の区分		設備名称
第二高放射	放射性廃棄	固体廃棄物の	高放射性の固	湿式貯蔵セル
性固体廃棄	物の廃棄施	廃棄施設	体廃棄物	乾式貯蔵セル
物貯蔵施設	設			100 トン天井クレーン
(2HASWS)				ドラム移送容器
				排気フィルタ
				湿式貯蔵セル水処理設備

表 1-1 主要な廃止措置対象施設(11/16)

建家名称	施設区分	設備等	の区分	設備名称
廃棄物処理	放射性廃棄	液体廃棄物の	低放射性の液	低放射性廃液貯槽
場(AAF)	物の廃棄施	廃棄施設	体廃棄物	中間受槽
	設			予熱器
				低放射性廃液第一蒸発缶
				サイクロン
				凝縮器
				冷却器
				低放射性濃縮廃液貯槽
				中和槽
				反応槽
				放出廃液貯槽
				放出管
				廃希釈剤貯槽
				廃溶媒・廃希釈剤貯槽
		固体廃棄物の	低放射性の固	クレーン
		廃棄施設	体廃棄物	

建家名称	施設区分	設備等	の区分	設備名称
第二低放射	放射性廃棄	液体廃棄物の	低放射性の液	予熱器
性廃液蒸発	物の廃棄施	廃棄施設	体廃棄物	低放射性廃液第二蒸発缶
処理施設(E)	設			サイクロン
				濃縮液槽
				凝縮器
				冷却器

表 1-1 主要な廃止措置対象施設(12/16)

建家名称	施設区分	設備等	の区分	設備名称
第三低放射	放射性廃棄	液体廃棄物の	低放射性の液	予熱器
性廃液蒸発	物の廃棄施	廃棄施設	体廃棄物	低放射性廃液第三蒸発缶
処理施設(Z)	設			サイクロン
				濃縮液冷却器
				廃液受入貯槽
				濃縮液貯槽
				凝縮器
				冷却器
				粗調整槽
				中和反応槽
				中間貯槽

建家名称	施設区分	設備等の区分		設備名称
放出廃液油	放射性廃棄	液体廃棄物の	低放射性の液	低放射性廃液貯槽
分除去施設	物の廃棄施	廃棄施設	体廃棄物	サンドフィルタ
(C)	設			活性炭吸着塔
				シックナー
				廃炭貯槽
				スラッジ貯槽
				放出廃液貯槽

表 1-1 主要な廃止措置対象施設(13/16)

建家名称	施設区分	設備等の区分		設備名称
スラッジ貯	放射性廃棄	液体廃棄物の	低放射性の液	スラッジ貯槽
蔵場(LW)	物の廃棄施 設	廃棄施設	体廃棄物	廃溶媒貯槽

建家名称	施設区分	設備等の区分		設備名称
第二スラッ	放射性廃棄	液体廃棄物の	低放射性の液	スラッジ貯槽
ジ貯蔵場	物の廃棄施	廃棄施設	体廃棄物	濃縮液貯槽
(LW2)	設			廃砂・廃樹脂貯槽

建家名称	施設区分	設備等の区分		設備名称
廃溶媒貯蔵	放射性廃棄	液体廃棄物の	低放射性の液	廃溶媒貯槽
場(WS)	物の廃棄施	廃棄施設	体廃棄物	
	設			

建家名称	施設区分	設備等の区分	設備名称
廃溶媒処理	その他再処	廃溶媒処理技術開発施設	受入貯槽
技術開発施	理設備の附		洗浄槽
設(ST)	属施設		第1抽出槽
			第 2 抽出槽
			第3抽出槽
			シリカゲル吸着塔
			廃シリカゲル貯槽
			蒸発缶
			充てん・かく拌装置
			加熱装置

表 1-1 主要な廃止措置対象施設(14/16)

建家名称	施設区分	設備等の区分			設備名称
アスファル	放射性廃棄	液体廃棄物の	低放射性の液	廃液受入貯槽	
卜固化処理	物の廃棄施	廃棄施設	体廃棄物		
施設(ASP)	設				

建家名称	施設区分	設備等の区分		設備名称
低放射性濃	放射性廃棄	液体廃棄物の	低放射性の液	濃縮液貯槽
縮廃液貯蔵	物の廃棄施	廃棄施設	体廃棄物	低放射性濃縮廃液貯槽
施設	設			廃液貯槽
(LWSF)				中間貯槽
				換気設備

建家名称	施設区分	設備等の区分		設備名称
低放射性廃	放射性廃棄	液体廃棄物の	低放射性の液	スラリ蒸発缶
棄物処理技	物の廃棄施	廃棄施設	体廃棄物	硝酸塩溶液蒸発缶
術開発施設	設	固体廃棄物の	低放射性の固	焼却炉
(LWTF) *2		廃棄施設	体廃棄物	

^{※2:} 低放射性廃棄物処理技術開発施設(LWTF)は、低放射性濃縮廃液等の処理方法を蒸発固化からセメント固化に変更する計画である。

表 1-1 主要な廃止措置対象施設(15/16)

建家名称	施設区分	設備等の区分		設備名称	
アスファル	放射性廃棄	固体廃棄物の	低放射性の固	アスファルト固化体取扱設備 (移送セル)	
ト固化体貯	物の廃棄施	廃棄施設	体廃棄物		
蔵施設(AS1)	設			アスファルト固化体取扱設備(貯蔵セル)	

建家名称	施設区分	設備等の区分		設備名称
第二アスフ	放射性廃棄	固体廃棄物の	低放射性の固	アスファルト固化体取扱設備(積換セル)
アルト固化	物の廃棄施	廃棄施設	体廃棄物	アスファルト固化体取扱設備(移送セル)
体貯蔵施設	設			アスファルト固化体取扱設備(貯蔵セル)
(AS2)				固化体評価試験設備

建家名称	施設区分	設備等の区分		設備名称
焼 却 施 設	放射性廃棄	固体廃棄物の	低放射性の固	焼却炉
(IF)	物の廃棄施	廃棄施設	体廃棄物	小型焼却炉
	設			廃気処理設備

建家名称	施設区分	設備等の区分		設備名称
分析所(CB)	放射性廃棄	液体廃棄物の	低放射性の液	中間貯槽
	物の廃棄施	廃棄施設	体廃棄物	
	設			
	その他再処	小型試験設備		セル
	理設備の附			グローブボックス
	属施設			試験装置

建家名称	施設区分	設備等の区分	設備名称
リサイクル	その他再処	リサイクル機器試験施設	試験設備
機器試験施	理設備の附		
設(RETF) ^{※3}	属施設		

※3: リサイクル機器試験施設(RETF)は、今後の再処理施設の廃止措置における活用方策を検討した上で計画を定める。

表 1-1 主要な廃止措置対象施設(16/16)

建家名称	施設区分	設備等の区分	設備名称
共通設備等	放射性廃棄	気体廃棄物の廃棄施設	主排気筒
	物の廃棄施		第一付属排気筒
	設		第二付属排気筒
			フィルタ
			換気設備
	計測制御系	工程計装設備	液面計,界面計,濃度計,圧力計,温度計,
	統施設		密度計,流量計,電導度計,放射線モニタ,
			水素イオン濃度計
	放射線管理	空気汚染モニタリング用機器	ベータ線ダストモニタ
	施設		プルトニウムダストモニタ
		放射線モニタリング用機器	ガンマ線エリアモニタ
			中性子線エリアモニタ
			臨界警報装置
		排気モニタリング設備	クリプトンモニタ
			ョウ素モニタ
			ダストモニタ
			排気モニタ
		排水モニタリング設備	排水サンプリング設備
			分析設備
		屋外放射線モニタリング設備	屋外放射線モニタリング設備
	その他再処	電源設備	主変圧器,動力用変圧器,照明用変圧器,動
	理設備の附		力・照明用変圧器
	属施設	非常用電源設備	非常用発電機,無停電電源装置,無停電電源
			設備
		圧縮空気設備	空気圧縮機
		給水施設	浄水装置,浄水貯槽,ポンプ,冷却塔,冷却
			水供給ポンプ、冷却塔供給ポンプ、低温貯水
			槽,高温貯水槽,冷却水供給槽,純水設備
		蒸気供給施設	ボイラ装置

表 1-2-1 放射性気体廃棄物の放出管理目標値 (主排気筒,第一付属排気筒及び第二付属排気筒の合計)

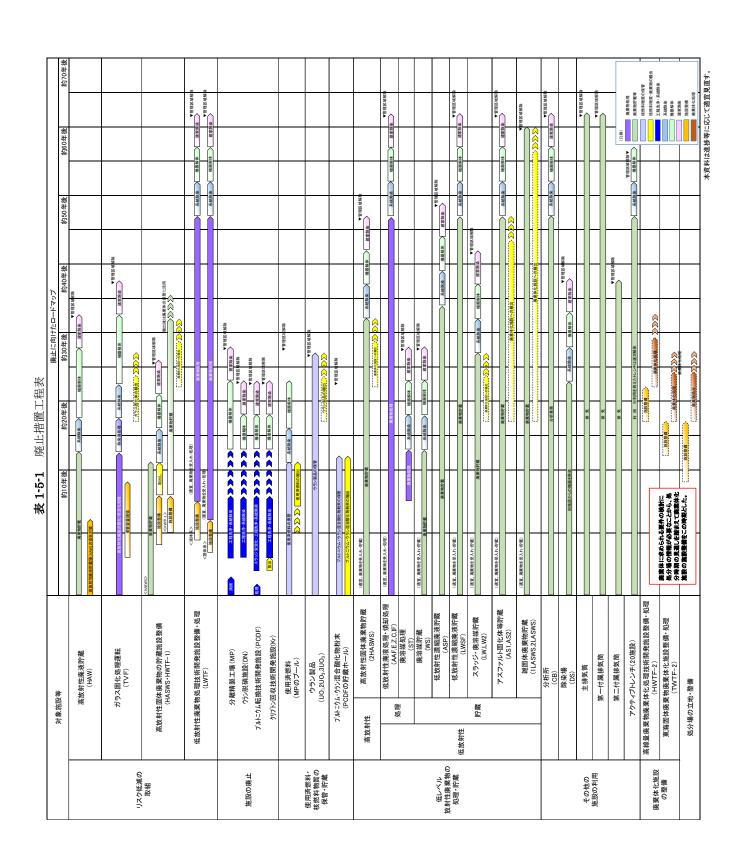
核種	1年間の放出管理目標値(GBq)
^{8 5} K r	2.0×10^6
³ H	1.0×10^4

表 1-2-2 処理済廃液の放出管理目標値

核種	1年間の放出管理目標値(GBq)
³ H	4.0×10^4

表 1-3 廃止措置の基本的なステップ

区分	期間中の主な実施事項
第1段階 解体準備期間	・工程洗浄・系統除染・汚染状況の調査
第2段階 機器解体期間	・放射性物質により汚染された区域(管理区域) における機器の解体撤去
第3段階 管理区域解除期間	・建家の汚染除去・保安上必要な機器の撤去・管理区域解除


表 1-4 使用済燃料及び核燃料物質の存在場所ごとの種類及び数量

平成 29 年 6 月 30 日現在

種別	施設	部屋名	数量
使用済燃料	分離精製工場 (MP)	貯蔵プール	低濃縮ウラン燃料:約17.2 tU ^{*1} (112 体) ウラン・プルトニウム混合酸化物燃料: 約23.5 tMOX ^{*2} (153 体)
ウラン製品	ウラン貯蔵所 (U03)	貯蔵室	
(三酸化ウラン 粉末)	第二ウラン貯蔵所 (2U03)	貯蔵室	
机水	第三ウラン貯蔵所 (3U03)	貯蔵室	
ウラン・プルト ニウム混合酸化 物(MOX)粉末	プルトニウム転換 技術開発施設 (PCDF)	粉末貯蔵室	

上記の他, プルトニウム転換技術開発施設 (PCDF) に核燃料物質を含む中和沈殿焙焼体**3 (廃液一次処理室に約 kg 保管) 及びスクラップ粉末 (粉末貯蔵室に約 kgMOX*2 保管), 工程内に表-12-1 に示す回収可能核燃料物質が存在する。

- ※1 金属ウラン換算
- ※2 金属ウラン・プルトニウム換算
- ※3 中和沈殿焙焼体:硝酸プルトニウム溶液及び硝酸ウラニル溶液の混合溶液を脱硝した際 に発生する廃液を水酸化ナトリウム溶液で中和することにより発生する沈殿物を乾燥・ 焙焼した固形物。これらの中和沈殿焙焼体は、水洗浄により更なる安定化を図った後、 プルトニウム転換技術開発施設(PCDF)の粉末貯蔵室に保管する。

令和2年度 令和元年度 令和 令和 項目 第4四半期 第1四半期 第2四半期 第3四半期 第4四半期 3年度 4年度 安全対策方針等 ww世間評価(建家・設備) 地震 TVF耐養評価 (建家・投機) 代表事法物の妥当性評価 津波 HAW健家健全性評価(波力等) TVF建家健全性評価(流力等) HAW・TVF事故対処有効性評価の進め方 HAW,TVF 事故対処関連 10/16 竜巻・火山・森林火災・ HAW · TVF建家健全性評価 外部火災 HAW · TVF安全機能 火災影響評価 - 防護対策検討 その他事象 進水影響評価·防護対策検討 建家評価・影響評価 HAW,TVF以外の 津波・地震・その他事象 対策の検討 安全対策設計、工事 準備/工事 HAW周辺地盤改良工事 準備/工事 接針 主排気筒の耐養補強工事 地震 第二付属排気筒配養補強工事 TVF投資耐費補強工事 ●第/工事 津波原流物防護療設置工事 部外機械強工事 津波 準備/工事 TVF一部外壁補強工事 接針 準備/工事 HAW事故に係る対5 準備/工事 HAW,TVF TVF事故に係る対象 事故対抗投資配養場所及整補施工事 事故対処関連 保安林·PP股票对応 TVF制御室の換気対策工事 準備/工事 HAW報券対策工業 準備/工事 TVF電券対策工程 **専業/工事** 竜巻・火山・森林火災・ 外部火災 TVF内部火装坩料 TVF達水対策工 対策(必要に応じて非常) HAW,TVF以外の 津波・地震・その他事象 施設

表 1-5-2 再処理維持基準規則を踏まえた主な安全対策に関する工程

スケジュールについては進捗等に応じて適宜見直すものである。

表 1-5-3 工程洗浄に関する工程

実施事項	平成29年度			H30年度		H31年度		H32年度						
	第3四半期	第4四半期	第1四半期	第2四半期	第3四半期	第4四半期	第1四半期	第2四半期	第3四半期	第4四半期	第1四半期	第2四半期	第3四半期	第4四半期
洗浄方法、手順の検討														
安全評価・安全対策の検討														
安全対策の実施)				
設備の点検・整備														
教育訓練														
工和连進の実施										工程洗涤	の実施に合わ	つせ、教育訓練	を実施	
工程洗浄の実施														

本資料は進捗等に応じて適宜見直す。

*: ガラス固化処理における製造本数は,運転状況に応じて増やし,ガラス固化処理をできるだけ前倒しで進める。

15年目 H42年度 14年目 H41年度 13年目 M121旗回台、コードリール、位置検出器、リミットスイッチ類を更新する * 2. 固化セルシルーンの表情が重要 * 3. 電化セルシーンの表情ケーブルリール及び付帯品を更新する * 3. SGMの計画的更新 M120コードリールを更新する H40年度 80★ 日49 12年目 H39年度 80本 € v¢ 9 11年目 H38年度 ₩0₩ 化体移動 (部) 6.25 JB 10年目 *1:BSMの計画的更新 H37年度 80本 6.0x A ∇:557**本** 9年目 2号游器炉 H36年度 数▷ ¥ ... 2号取り外し 2号取り外し 3号据え付け 8年目 BSM計画的更新*3 H35年度 新保管施設建設工事 7年目 保管ピット選杯 H34年度 ∇:486本 固化セルクレーンの走行ケーブルリール 6年目 H33年度 回化処理をできるだけ前倒し(19-10P 最大15本、21-10P:最大10本)した場 らの保管ビット選杯時期 420本 ▽認可 **₩** 650 月 | 固化セルクレーン計画的更新*2 * ***** 21-1¢P 5年目 H32年度 原子力安全協定に基づく事前了解等 6か月 作動試験 施工股計 保管能力增強工事 基本設計 詳細設計 廃止措置計画変更申請 を ▽ ▽申請 4年目 H31年度 ↑認可 製作・築炉 MTF設置 \$ * \$ 20 ★ * 間接加熱 廃上措置計画変更申請 ▽申請 ▽認可 廃止措置計画変更申請 マ申請
マ語
1設計 施工設計 3年目 関係箇所との調整 6か月 H30年度 BSM旋回台3 MTF改造 5班3交替体制 間接加熱・はつり装置1号、2号 BSM計画的更新*1 2年目 詳細設計 原子力安全協定に基づく H29年度 関係箇所との調整 \$ ₽ \$ 器 \$. ▷ 9条 4条 46条 (16—1 13本) (17—1 46本) 移行期間 +6名 基本設計 H28年度 4班3交替体制 H27年度 H26年度 保守体制 ③固化セル内廃棄物解体 払出し 運転体制 ⑩新規保管施設建設 ①ガラス固化処理 ③保管能力増強 (TVF) ⑤高経年化対策 6遠隔機器整備 ⑦組織体制 ②定期検査 点検·保守等 4ガラス除去 8設計·製作 (保管本数) 新規制基準対応 女 女 女 (2)施設整備 (4)保管施設 (1)運転· 定期検査等 (3)溶融炉 開発·設置 項目

表 1-5-4 ガラス固化処理に関する工程

表 1-6 回収可能核燃料物質の存在場所ごとの保有量

平成 29 年 6 月 30 日現在

施設	工程名	物質の状態	保有量
	せん断	使用済燃料せん断粉末	
	溶解 清澄・調整	洗浄液	
八座松坐集制 丁 1日	抽出 (酸回収, リワ ーク等を含む)	洗浄液	
分離精製工場 (MP)	Pu 濃縮	洗浄液	
	Pu 製品貯蔵 ^{※3}	プルトニウム溶液	
	U 溶液濃縮・ 試薬調整	ウラン溶液	
	U脱硝	ウラン粉末 (貯蔵容器に収納)	
ウラン脱硝施設 (DN)	U濃縮・脱硝	ウラン溶液	
プルトニウム転換 技術開発施設 (PCDF)	受入・混合**4	ウラン溶液	

上記の他,分析所(CB)に分析試料等(約 kgU^{※1},約 kgPu^{※2})が存在する。

これらの核燃料物質については、製品として回収するか又は放射性廃棄物として取り扱うかについて、工程洗浄の詳細な方法を定める段階で決定し、廃止措置計画の変更申請を行う。

- ※1 金属ウラン換算
- ※2 金属プルトニウム換算
- ※3 施設区分「製品貯蔵施設」
- ※4 施設区分「その他再処理設備の附属施設」

表 1-7 性能維持施設 (1/44)

設備名	4称等	要求される機能	性能	維持すべき期間
	燃料受入系 扉	閉じ込めの機能	扉間のインターロック機能が正常に作動すること。	分離精製工場の管理 区域解除まで
分離精製工 場(MP)	貯蔵プール	使用済燃料の貯蔵施	濃縮ウラン貯蔵プールの熱交換器に供給されるプール水の流量が 170 m³/h 以上であること及び冷却水の流量が 200 m³/h 以上であること。	使用済燃料の搬出が
	熱交換器	設等(冷却機能)	予備貯蔵プールの熱交換器に供給されるプール水の流量が 170 m³/h 以上及び冷却水の流量が 200 m³/h 以上であること。	完了するまで
ガラス固化 技術開発施 設(TVF)	溶融炉	閉じ込めの機能	インターロック機能が正常に動作すること。	系統除染が完了するまで
分離精製工 場(MP)	建家及びセル換気系	・火災等による損傷の防止機能・閉じ込めの機能・換気機能	・通常電源時及び非常電源時の送・排風機の起動順序を確認し、建家内の負圧バランスが保たれ、また、排気系統に漏れ等がなく健全であること。 ・排風機故障時の予備機への自動切替を確認し、建家内の負圧バランスが保たれ、また、排気系統に漏れ等がなく健全であること。	分離精製工場の管理 区域解除まで
高放射性廃 液 貯 蔵 場 (HAW)	建家及びセル換気系	・閉じ込めの機能 ・換気機能	・通常電源時及び非常電源時の送・排風機の起動順序を確認し、建家内の負圧バランスが保たれ、また、排気系統に漏れ等がなく健全であること。 ・排風機故障時の予備機への自動切替を確認し、建家内の負圧バランスが保たれ、また、排気系統に漏れ等がなく健全であること。	高放射性廃液貯蔵場の管理区域解除まで
廃棄物処理 場(AAF)	建家及びセル換気系	・火災等による損傷の防止機能・閉じ込めの機能・換気機能	・通常電源時及び非常電源時の送・排風機の起動順序を確認し、建家内の負圧バランスが保たれ、また、排気系統に漏れ等がなく健全であること。・排風機故障時の予備機への自動切替を確認し、建家内の負圧バランスが保たれ、また、排気系統に漏れ等がなく健全であること。	廃棄物処理場の管理 区域解除まで

表 1-7 性能維持施設 (2/44)

設備名	 呂称等	要求される機能	性能	維持すべき期間
分析所(CB)	建家及びセル換気系	・閉じ込めの機能 ・換気機能	・通常電源時及び非常電源時の送・排風機の起動順序を確認し、建家内の負圧バランスが保たれ、また、排気系統に漏れ等がなく健全であること。・排風機故障時の予備機への自動切替を確認し、建家内の負圧バランスが保たれ、また、排気系統に漏れ等がなく健全であること。	分析所の管理区域解 除まで
第二低放射性廃液蒸発处理施設(E)	建家及びセル換気系	・閉じ込めの機能 ・換気機能	・通常電源時及び非常電源時の送・排風機の起動順序を確認し、建家内の負圧バランスが保たれ、また、排気系統に漏れ等がなく健全であること。・排風機故障時の予備機への自動切替を確認し、建家内の負圧バランスが保たれ、また、排気系統に漏れ等がなく健全であること。	第二低放射性廃液蒸 発処理施設の管理区 域解除まで
第三低放射 性廃液蒸発 処理施設 (Z)	建家及びセル換気系	・閉じ込めの機能 ・換気機能	・通常電源時及び非常電源時の送・排風機の起動順序を確認し、建家内の負圧バランスが保たれ、また、排気系統に漏れ等がなく健全であること。・排風機故障時の予備機への自動切替を確認し、建家内の負圧バランスが保たれ、また、排気系統に漏れ等がなく健全であること。	第三低放射性廃液蒸 発処理施設の管理区 域解除まで
放出廃液油 分除去施設 (C)	建家換気系	・閉じ込めの機能 ・換気機能	・通常電源時及び非常電源時の送・排風機の起動順序を確認し、建家内の負圧バランスが保たれ、また、排気系統に漏れ等がなく健全であること。・排風機故障時の予備機への自動切替を確認し、建家内の負圧バランスが保たれ、また、排気系統に漏れ等がなく健全であること。	放出廃液油分除去施 設の管理区域解除ま で
廃溶媒貯蔵 場(WS)	建家及びセル換気系	・火災等による損傷の防止機能・閉じ込めの機能・換気機能	・通常電源時及び非常電源時の送・排風機の起動順序を確認し、建家内の負圧バランスが保たれ、また、排気系統に漏れ等がなく健全であること。・排風機故障時の予備機への自動切替を確認し、建家内の負圧バランスが保たれ、また、排気系統に漏れ等がなく健全であること。	廃溶媒貯蔵場の管理 区域解除まで
第二スラッ ジ 貯 蔵 場 (LW2)	建家及びセル換気系	・閉じ込めの機能 ・換気機能	・通常電源時及び非常電源時の送・排風機の起動順序を確認し、建家内の負圧バランスが保たれ、また、排気系統に漏れ等がなく健全であること。・排風機故障時の予備機への自動切替を確認し、建家内の負圧バランスが保たれ、また、排気系統に漏れ等がなく健全であること。	第二スラッジ貯蔵場 の管理区域解除まで

表 1-7 性能維持施設 (3/44)

設備名	4称等	要求される機能	性能	維持すべき期間
ウラン脱硝 施設(DN)	建家换気系	・閉じ込めの機能 ・換気機能	・通常電源時及び非常電源時の送・排風機の起動順序を確認し、建家内の負圧バランスが保たれ、また、排気系統に漏れ等がなく健全であること。・排風機故障時の予備機への自動切替を確認し、建家内の負圧バランスが保たれ、また、排気系統に漏れ等がなく健全であること。	ウラン脱硝施設の管 理区域解除まで
焼 却 施 設 (IF)	建家换気系	・閉じ込めの機能 ・換気機能	・通常電源時及び非常電源時の送・排風機の起動順序を確認し、建家内の負圧バランスが保たれ、また、排気系統に漏れ等がなく健全であること。・排風機故障時の予備機への自動切替を確認し、建家内の負圧バランスが保たれ、また、排気系統に漏れ等がなく健全であること。	焼却施設の管理区域 解除まで
第二高放射 性固体廃棄 物貯蔵施設 (2HASWS)	建家及びセル換気系	・閉じ込めの機能 ・換気機能	・通常電源時及び非常電源時の送・排風機の起動順序を確認し、建家内の負圧バランスが保たれ、また、排気系統に漏れ等がなく健全であること。・排風機故障時の予備機への自動切替を確認し、建家内の負圧バランスが保たれ、また、排気系統に漏れ等がなく健全であること。	第二高放射性固体廃 棄物貯蔵施設の管理 区域解除まで
アスファル ト固化処理 施設 (ASP)	建家及びセル換気系	・閉じ込めの機能 ・換気機能	・通常電源時及び非常電源時の送・排風機の起動順序を確認し、建家内の負圧バランスが保たれ、また、排気系統に漏れ等がなく健全であること。・排風機故障時の予備機への自動切替を確認し、建家内の負圧バランスが保たれ、また、排気系統に漏れ等がなく健全であること。	アスファルト固化処 理施設の管理区域解 除まで
アスファル ト固化体貯 蔵施設 (AS1)	建家及びセル換気系	・閉じ込めの機能 ・換気機能	・通常電源時及び非常電源時の送・排風機の起動順序を確認し、建家内の負圧バランスが保たれ、また、排気系統に漏れ等がなく健全であること。・排風機故障時の予備機への自動切替を確認し、建家内の負圧バランスが保たれ、また、排気系統に漏れ等がなく健全であること。	アスファルト固化体 貯蔵施設の管理区域 解除まで
廃溶媒処理 技術開発施 設(ST)	建家及びセル換気系	・火災等による損傷の防止機能・閉じ込めの機能・換気機能	・通常電源時及び非常電源時の送・排風機の起動順序を確認し、建家内の負圧バランスが保たれ、また、排気系統に漏れ等がなく健全であること。・排風機故障時の予備機への自動切替を確認し、建家内の負圧バランスが保たれ、また、排気系統に漏れ等がなく健全であること。	廃溶媒処理技術開発 施設の管理区域解除 まで

表 1-7 性能維持施設 (4/44)

設備名	5称等	要求される機能	性能	維持すべき期間
低放射性濃 縮廃液貯蔵 施設(LWSF)	建家及びセル換気系	・閉じ込めの機能 ・換気機能	・通常電源時及び非常電源時の送・排風機の起動順序を確認し、建家内の負圧バランスが保たれ、また、排気系統に漏れ等がなく健全であること。・排風機故障時の予備機への自動切替を確認し、建家内の負圧バランスが保たれ、また、排気系統に漏れ等がなく健全であること。	低放射濃縮廃液貯蔵 施設の管理区域解除 まで
高放射性固体廃棄物貯蔵庫 (HASWS)	セル換気系	・閉じ込めの機能 ・換気機能	・排風機故障時の予備機への自動切替を確認し、建家内の負圧バランスが保たれ、また、排気系統に漏れ等がなく健全であること。	高放射性固体廃棄物 貯蔵庫の管理区域解 除まで
第二アスフ ァルト固化 体貯蔵施設 (AS2)	建家及びセル換気系	・閉じ込めの機能 ・換気機能	・通常電源時の送・排風機の起動順序を確認し、建家内の負圧バランスが保たれ、また、排気系統に漏れ等がなく健全であること。 ・排風機故障時の予備機への自動切替を確認し、建家内の負圧バランスが保たれ、また、排気系統に漏れ等がなく健全であること。	第二アスファルト固 化体貯蔵施設の管理 区域解除まで
ガラス固化 技術開発施 設(TVF)	建家及びセル換気系	・閉じ込めの機能 ・換気機能	・通常電源時及び非常電源時の送・排風機の起動順序を確認し、建家内の負圧バランスが保たれ、また、排気系統に漏れ等がなく健全であること。 ・排風機故障時の予備機への自動切替を確認し、建家内の負圧バランスが保たれ、また、排気系統に漏れ等がなく健全であること。	ガラス固化技術開発 施設の管理区域解除 まで
プルトニウ ム転換技術 開 発 施 設 (PCDF)	建家及びセル換気系	・閉じ込めの機能 ・換気機能	・通常電源時及び非常電源時の送・排風機の起動順序を確認し、建家内の負圧バランスが保たれ、また、排気系統に漏れ等がなく健全であること。 ・排風機故障時の予備機への自動切替を確認し、建家内の負圧バランスが保たれ、また、排気系統に漏れ等がなく健全であること。	プルトニウム転換技 術開発施設の管理区 域解除まで
クリプトン 回収技術開 発施設(Kr)	建家及びセル換気系	・閉じ込めの機能 ・換気機能	・通常電源時及び非常電源時の送・排風機の起動順序を確認し、建家内の負圧バランスが保たれ、また、排気系統に漏れ等がなく健全であること。 ・排風機故障時の予備機への自動切替を確認し、建家内の負圧バランスが保たれ、また、排気系統に漏れ等がなく健全であること。	クリプトン回収技術 開発施設の管理区域 解除まで

表 1-7 性能維持施設 (5/44)

設備名	5称等	要求される機能	性能	維持すべき期間
高放射性廃液 貯 蔵 場 (HAW)	空気圧縮機	計測制御系統施設 (圧縮空気の 供給機能)	吐出圧力が設定値内(0.50~0.88 MPaGauge)であること。	高放射性廃液貯蔵場 の管理区域解除まで
ユーティリ ティ施設 (UC)	空気圧縮機	・火災等による損傷の防止機能 ・計測制御系統施設(圧縮空気 の供給機能)	吐出圧力が 0.70 MPaGauge 以上であること。	供給先の建家の管理 区域解除まで
焼 却 施 設 (IF)	空気圧縮機	計測制御系統施設 (圧縮空気の 供給機能)	空気圧縮機の容量(吐出圧力)が設定値内(0.50~0.68 MPaGauge)であること。	焼却施設の管理区域 解除まで
第二高放射性固体廃棄物貯蔵施設(2HASWS)	空気圧縮機	計測制御系統施設 (圧縮空気の 供給機能)	空気圧縮機の容量(吐出圧力)が設定値内(0.50~0.68 MPaGauge)であること。	第二高放射性固体廃 棄物貯蔵施設の管理 区域解除まで
第二アスファルト固化 ケ貯蔵施設 (AS2)	空気圧縮機	計測制御系統施設 (圧縮空気の 供給機能)	空気圧縮機の容量(吐出圧力)が設定値内(0.50~0.68 MPaGauge)であること。	第二アスファルト固 化体貯蔵施設の管理 区域解除まで
ガラス固化 技術開発施 設(TVF)	空気圧縮機	・火災等による損傷の防止機能 ・計測制御系統施設(圧縮空気 の供給機能)	空気圧縮機の容量(吐出圧力)が設定値内(0.40~0.68 MPaGauge)であること。	ガラス固化技術開発 施設の管理区域解除 まで
プルトニウ ム転換技術 開 発 施 設 (PCDF)	空気圧縮機	・火災等による損傷の防止機能・計測制御系統施設(圧縮空気の供給機能)	空気圧縮機の容量(吐出圧力)が設定値内(0.50~0.68 MPaGauge)であること。	プルトニウム転換技 術開発施設の管理区 域解除まで
クリプトン 回収技術開 発施設(Kr)	空気圧縮機	計測制御系統施設 (圧縮空気の 供給機能)	空気圧縮機の容量(吐出圧力)が設定値内(0.50~0.88 MPaGauge)であること。	クリプトン回収技術 開発施設の管理区域 解除まで
分離精製工	プルトニウ ム溶液蒸発 缶	核燃料物質の臨界防止機能	液面制御装置の制御機能が正常であること。	系統除染が完了する
場(MP)	冷水設備用 ポンプ	・その他 (冷却水供給機能)	ポンプの容量(約 80 m³/h) に対応した締切圧力(0.74 MPaGauge)以上であること。	まで

表 1-7 性能維持施設 (6/44)

設備		要求される機能	性能	維持すべき期間
			ポンプの容量(約 170 m³/h) に対応した締切圧力 (736 kPaGauge) 以上であること。	
資材庫	浄水設備用 ポンプ	火災等による損傷の防止機能 (浄水供給機能)	ポンプの容量(約 170 m³/h)に対応した締切圧力(727 kPaGauge)以上であること。	全ての建家の管理区 域解除まで
			ポンプの容量(約 170 m³/h)に対応した締切圧力(736 kPaGauge)以上であること。	
ユーティリ ティ施設 (UC)	冷却水供給 ポンプ	その他(冷却水供給機能)	ポンプの容量 1100 m³/h/2 基以上であること。	系統除染が完了する まで
高放射性廃	冷却水設備 プロセス用 ポンプ	その他(冷却水供給機能)	ポンプの容量(約 200 m^3/h)に対応した締切圧力(0.50 MPaGauge)以上であること。	系統除染が完了する まで
液貯蔵場(HAW)	冷水設備用	その他(冷却水供給機能)	ポンプの容量 (約 $3.5~\text{m}^3/\text{h}$) に対応した締切圧力 (0.22 MPaGauge) 以上であること。	系統除染が完了する
	ポンプ	(市本水)	ポンプの容量(約 15 m³/h)に対応した締切圧力(0.34 MPaGauge)以上であること。	まで
中央運転管 理室	蒸気設備	閉じ込めの機能(蒸気供給機 能)	蒸気圧力 (1.76 MPaGauge 以内) を維持し, ボイラ本体から著しい漏えいがないこと。	系統除染が完了する まで
ガラス固化 技術開発施	保管ピット	保管廃棄施設(冷却機能)	排気風量が 60.0×10 ³ m ³ /h 以上であること。	ガラス固化技術開発 施設の管理区域解除 まで
設(TVF)	冷却塔	その他(冷却機能)	冷却塔出口の冷却水流量が 195 m³/h 以上であること。	系統除染が完了する まで
ガラス固化技術開発棟	建家・構築物	・地震による損傷の防止機能・津波による損傷の防止機能・閉じ込めの機能・遮蔽機能	建家及び構築物の機能・性能に影響を与える有害なき裂, 剝離などがないこと。	ガラス固化技術開発 施設の管理区域解除 まで
ガラス固化 技術管理棟	建家・構築物	・地震による損傷の防止機能 ・津波による損傷の防止機能	建家及び構築物の機能・性能に影響を与える有害なき裂, 剝離などがないこと。	ガラス固化技術開発 施設の管理区域解除 まで

表 1-7 性能維持施設 (7/44)

設備		要求される機能	性能	維持すべき期間
第二付属排気筒	建家・構築物	・地震による損傷の防止機能・廃棄施設(排気機能)	建家及び構築物の機能・性能に影響を与える有害なき裂, 剝離などがないこと。	ガラス固化技術開発 施設の管理区域解除 まで
クリプトン 回収技術開 発施設(Kr)	建家·構築物	・地震による損傷の防止機能・閉じ込めの機能・遮蔽機能	建家及び構築物の機能・性能に影響を与える有害なき裂, 剝離などがないこと。	クリプトン回収技術 開発施設の管理区域 解除まで
高放射性廃 液 貯 蔵 場 (HAW)	建家・構築物	・地震による損傷の防止機能・津波による損傷の防止機能・閉じ込めの機能・遮蔽機能	建家及び構築物の機能・性能に影響を与える有害なき裂, 剝離などがないこと。	高放射性廃液貯蔵場の管理区域解除まで
ウラン脱硝 施設(DN)	建家・構築物	・地震による損傷の防止機能・閉じ込めの機能・遮蔽機能	建家及び構築物の機能・性能に影響を与える有害なき裂, 剝離などがないこと。	ウラン脱硝施設の管 理区域解除まで
ウラン貯蔵 所 (UO3)	建家・構築物	・地震による損傷の防止機能・遮蔽機能	建家及び構築物の機能・性能に影響を与える有害なき裂, 剝離などがないこと。	ウラン貯蔵所の管理 区域解除まで
第二ウラン 貯 蔵 所 (2U03)	建家・構築物	・地震による損傷の防止機能 ・遮蔽機能	建家及び構築物の機能・性能に影響を与える有害なき裂, 剝離などがないこと。	第二ウラン貯蔵所の 管理区域解除まで
第三ウラン 貯 蔵 所 (3U03)	建家・構築物	・地震による損傷の防止機能 ・遮蔽機能	建家及び構築物の機能・性能に影響を与える有害なき裂, 剝離などがないこと。	第三ウラン貯蔵所の 管理区域解除まで
プルトニウ ム転換技術 開 発 施 設 (PCDF)	建家・構築物	・地震による損傷の防止機能・津波による損傷の防止機能・閉じ込めの機能・遮蔽機能	建家及び構築物の機能・性能に影響を与える有害なき裂, 剝離などがないこと。	プルトニウム転換技 術開発施設の管理区 域解除まで
除染場(DS)	建家·構築物	・地震による損傷の防止機能・閉じ込めの機能・遮蔽機能	建家及び構築物の機能・性能に影響を与える有害なき裂, 剝離などがないこと。	除染場の管理区域解 除まで
分離精製工 場(MP)	建家・構築物	・地震による損傷の防止機能・津波による損傷の防止機能・閉じ込めの機能・遮蔽機能	建家及び構築物の機能・性能に影響を与える有害なき裂, 剝離などがないこと。	分離精製工場の管理 区域解除まで

表 1-7 性能維持施設 (8/44)

		双 11		
設備	名称等	要求される機能	性能	維持すべき期間
分析所(CB)	建家·構築物	・地震による損傷の防止機能・閉じ込めの機能・遮蔽機能	建家及び構築物の機能・性能に影響を与える有害なき裂, 剝離などがないこと。	分析所の管理区域解 除まで
ユーティリ ティ 施 設 (UC)	建家·構築物	地震による損傷の防止機能	建家及び構築物の機能・性能に影響を与える有害なき裂, 剝離などがないこと。	供給先の建家の管理 区域解除まで
資材庫	建家・構築物	地震による損傷の防止機能	建家及び構築物の機能・性能に影響を与える有害なき裂, 剝離などがないこと。	供給先の建家の管理 区域解除まで
主排気筒	建家•構築物	・地震による損傷の防止機能 ・廃棄施設 (排気機能)	建家及び構築物の機能・性能に影響を与える有害なき裂, 剝離などがないこと。	排気元の建家の管理 区域解除まで
高放射性固体廃棄物貯蔵庫(HASWS)	建家·構築物	・地震による損傷の防止機能・閉じ込めの機能・遮蔽機能	建家及び構築物の機能・性能に影響を与える有害なき裂, 剝離などがないこと。	高放射性固体廃棄物 貯蔵庫の管理区域解 除まで
第二高放射 性固体廃棄 物貯蔵施設 (2HASWS)	建家・構築物	・地震による損傷の防止機能 ・閉じ込めの機能 ・遮蔽機能	建家及び構築物の機能・性能に影響を与える有害なき裂, 剝離などがないこと。	第二高放射性固体廃 棄物貯蔵施設の管理 区域解除まで
アスファル ト固化処理 施設 (ASP)	建家·構築物	・地震による損傷の防止機能・閉じ込めの機能・遮蔽機能	建家及び構築物の機能・性能に影響を与える有害なき裂, 剝離などがないこと。	アスファルト固化処 理施設の管理区域解 除まで
アスファル ト固化体貯 蔵 施 設 (AS1)	建家・構築物	・地震による損傷の防止機能 ・閉じ込めの機能 ・遮蔽機能	建家及び構築物の機能・性能に影響を与える有害なき裂, 剝離などがないこと。	アスファルト固化体 貯蔵施設の管理区域 解除まで
第二アスファルト固化 体貯蔵施設 (AS2)	建家・構築物	・地震による損傷の防止機能 ・閉じ込めの機能 ・遮蔽機能	建家及び構築物の機能・性能に影響を与える有害なき裂, 剝離などがないこと。	第二アスファルト固 化体貯蔵施設の管理 区域解除まで
第一低放射 性固体廃棄 物貯蔵場 (1LASWS)	建家・構築物	・地震による損傷の防止機能 ・遮蔽機能	建家及び構築物の機能・性能に影響を与える有害なき裂, 剝離などがないこと。	第一低放射性固体廃 棄物貯蔵場の管理区 域解除まで

表 1-7 性能維持施設 (9/44)

設備		要求される機能	性能	維持すべき期間
第二低放射 性固体廃棄 物貯蔵場 (2LASWS)	建家・構築物	・地震による損傷の防止機能・遮蔽機能	建家及び構築物の機能・性能に影響を与える有害なき裂, 剝離などがないこと。	第二低放射性固体廃 棄物貯蔵場の管理区 域解除まで
廃棄物処理 場(AAF)	建家·構築物	・地震による損傷の防止機能・閉じ込めの機能・遮蔽機能	建家及び構築物の機能・性能に影響を与える有害なき裂, 剝離などがないこと。	廃棄物処理場の管理 区域解除まで
第二低放射性廃液蒸発处理施設(E)	建家・構築物	・地震による損傷の防止機能・閉じ込めの機能・遮蔽機能	建家及び構築物の機能・性能に影響を与える有害なき裂, 剝離などがないこと。	第二低放射性廃液蒸 発処理施設の管理区 域解除まで
第三低放射性廃液蒸発处理施設(Z)	建家・構築物	・地震による損傷の防止機能・閉じ込めの機能・遮蔽機能	建家及び構築物の機能・性能に影響を与える有害なき裂, 剝離などがないこと。	第三低放射性廃液蒸 発処理施設の管理区 域解除まで
放出廃液油 分除去施設 (C)	建家·構築物	・地震による損傷の防止機能・閉じ込めの機能・遮蔽機能	建家及び構築物の機能・性能に影響を与える有害なき裂, 剝離などがないこと。	放出廃液油分除去施 設の管理区域解除ま で
廃溶媒処理 技術開発施 設(ST)	建家·構築物	・地震による損傷の防止機能・閉じ込めの機能・遮蔽機能	建家及び構築物の機能・性能に影響を与える有害なき裂, 剝離などがないこと。	廃溶媒処理技術開発 施設の管理区域解除 まで
低放射性濃 縮廃液貯蔵 施設(LWSF)	建家・構築物	・地震による損傷の防止機能 ・閉じ込めの機能 ・遮蔽機能	建家及び構築物の機能・性能に影響を与える有害なき裂, 剝離などがないこと。	低放射性濃縮廃液貯 蔵施設の管理区域解 除まで
廃溶媒貯蔵 場(WS)	建家・構築物	・地震による損傷の防止機能 ・閉じ込めの機能 ・遮蔽機能	建家及び構築物の機能・性能に影響を与える有害なき裂, 剝離などがないこと。	廃溶媒貯蔵場の管理 区域解除まで
スラッジ貯 蔵場(LW)	建家・構築物	・地震による損傷の防止機能 ・閉じ込めの機能 ・遮蔽機能	建家及び構築物の機能・性能に影響を与える有害なき裂, 剝離などがないこと。	スラッジ貯蔵場の管 理区域解除まで

表 1-7 性能維持施設 (10/44)

設備		要求される機能	性能	維持すべき期間
第二スラッ ジ 貯 蔵 場 (LW2)	建家・構築物	・地震による損傷の防止機能・閉じ込めの機能・遮蔽機能	建家及び構築物の機能・性能に影響を与える有害なき裂, 剝離などがないこと。	第二スラッジ貯蔵場 の管理区域解除まで
焼 却 施 設 (IF)	建家·構築物	・地震による損傷の防止機能・閉じ込めの機能・遮蔽機能	建家及び構築物の機能・性能に影響を与える有害なき裂, 剝離などがないこと。	焼却施設の管理区域 解除まで
第一付属排 気筒	建家・構築物	・地震による損傷の防止機能 ・廃棄施設(排気機能)	建家及び構築物の機能・性能に影響を与える有害なき裂, 剝離などがないこと。	排気元の建家の管理 区域解除まで
中間開閉所	建家•構築物	・地震による損傷の防止機能 ・津波による損傷の防止機能	建家及び構築物の機能・性能に影響を与える有害なき裂, 剝離などがないこと。	供給先の建家の管理 区域解除まで
第二中間開 閉所	建家•構築物	・地震による損傷の防止機能 ・津波による損傷の防止機能	建家及び構築物の機能・性能に影響を与える有害なき裂, 剝離などがないこと。	供給先の建家の管理 区域解除まで
排水モニタ室	建家•構築物	地震による損傷の防止機能	建家及び構築物の機能・性能に影響を与える有害なき裂, 剝離などがないこと。	全ての建家の管理区 域解除まで
	浸水防止扉	津波による損傷の防止機能	・浸水防止扉等に有害な傷,損傷及び変形等がないこと。 ・浸水防止扉の水密ゴムパッキンに有害な傷,変形,劣化 がないこと。 ・浸水防止扉を開閉させ,容易に開閉できること。	
分離精製工 場(MP)	ハッチ扉	津波による損傷の防止機能	・ハッチ扉に有害な傷、損傷及び変形等がないこと。 ・ハッチ扉のゴムパッキンに有害な傷、損傷及び劣化等の ないこと、固定ボルトの欠損、落下がないこと。 ・開閉に要する吊り具(フック,アイボルト等)が健全で あること。	分離精製工場の管理 区域解除まで
	閉止板	津波による損傷の防止機能	・閉止板に有害な傷,損傷及び変形等がないこと。 ・閉止板と躯体壁のコーキング材に剝離,劣化等のないこと,固定ボルトの欠損,落下のないこと。	
	その他,延長ダクト等の浸水防止設備	津波による損傷の防止機能	・浸水防止設備(延長ダクト等)に有害な傷,損傷,変形等がないこと。 ・浸水防止設備(延長ダクト等)の付属品(固定ボルト等) に欠損,落下等がないこと。	

表 1-7 性能維持施設 (11/44)

設備		要求される機能	性能	維持すべき期間
高放射性廃液 貯蔵場	浸水防止扉	津波による損傷の防止機能	・浸水防止扉等に有害な傷,損傷及び変形等がないこと。 ・浸水防止扉の水密ゴムパッキンに有害な傷,変形,劣化 がないこと。 ・浸水防止扉を開閉させ,容易に開閉できること。	高放射性廃液貯蔵場 の管理区域解除まで
(HAW)	閉止板 (盾式 角落し)	津波による損傷の防止機能	・盾に有害な傷,損傷及び変形等がないこと。 ・支柱に有害な傷,損傷及び変形等がないこと。	
	浸水防止扉	津波による損傷の防止機能	・浸水防止扉等に有害な傷,損傷及び変形等がないこと。 ・浸水防止扉の水密ゴムパッキンに有害な傷,変形,劣化がないこと。 ・浸水防止扉を開閉させ,容易に開閉できること。	
プルトニウ ム転換技術 開 発 施 設 (PCDF)		津波による損傷の防止機能	・ハッチ扉に有害な傷、損傷及び変形等がないこと。 ・ハッチ扉のゴムパッキンに有害な傷、損傷及び劣化等の ないこと、固定ボルトの欠損、落下がないこと。 ・開閉に要する吊り具(フック,アイボルト等)が健全で あること。	プルトニウム転換技 術開発施設の管理区 域解除まで
	その他, 延長 ダクト等の 浸水防止設 備	津波による損傷の防止機能	・浸水防止設備(延長ダクト等)に有害な傷,損傷,変形等がないこと。 ・浸水防止設備(延長ダクト等)の付属品(固定ボルト等) に欠損,落下等がないこと。	
	浸水防止扉	津波による損傷の防止機能	・浸水防止扉等に有害な傷,損傷及び変形等がないこと。 ・浸水防止扉の水密ゴムパッキンに有害な傷,変形,劣化がないこと。 ・浸水防止扉を開閉させ,容易に開閉できること。	
ガラス固化技術開発施	閉止板	津波による損傷の防止機能	・閉止板に有害な傷,損傷及び変形等がないこと。 ・閉止板固定ボルトの欠損,落下のないこと。	ガラス固化技術開発 施設の管理区域解除
投侧用笼池 設(TVF)	閉止板 (盾式 角落し)	津波による損傷の防止機能	・盾に有害な傷,損傷及び変形等がないこと。 ・支柱に有害な傷,損傷及び変形等がないこと。	施成の自座区域解除 まで
	その他, 延長 ダクト等の 浸水防止設 備	津波による損傷の防止機能	・浸水防止設備(延長ダクト等)に有害な傷,損傷,変形等がないこと。 ・浸水防止設備(延長ダクト等)の付属品(固定ボルト等) に欠損,落下等がないこと。	

表 1-7 性能維持施設 (12/44)

設備名	3称等	要求される機能	性能	維持すべき期間		
	浸水防止扉	津波による損傷の防止機能	・浸水防止扉等に有害な傷,損傷及び変形等がないこと。 ・浸水防止扉の水密ゴムパッキンに有害な傷,変形,劣化がないこと。 ・浸水防止扉を開閉させ,容易に開閉できること。			
分析所(CB)	ハッチ扉	津波による損傷の防止機能	・ハッチ扉に有害な傷,損傷及び変形等がないこと。 ・ハッチ扉のゴムパッキンに有害な傷,損傷及び劣化等のな 単波による損傷の防止機能 ・開閉に要する吊り具(フック,アイボルト等)が健全で あること。			
	閉止板	津波による損傷の防止機能	・閉止板に有害な傷,損傷及び変形等がないこと。 ・閉止板と躯体壁のコーキング材に剝離,劣化等のないこと,固定ボルトの欠損,落下のないこと。			
中間開閉所	浸水防止扉	津波による損傷の防止機能	・扉等に有害な傷,損傷及び変形等がないこと。 ・扉の水密ゴムパッキンに有害な傷,変形,劣化がないこと。 ・扉を開閉させ,容易に開閉できること。	供給先の建家の管理		
T [#][#][#][#][/]	閉止板	津波による損傷の防止機能	・閉止板に有害な傷,損傷及び変形等がないこと。 ・閉止板と躯体壁のコーキング材に剝離,劣化等のない こと,固定ボルトの欠損,落下のないこと。	区域解除まで		
第二中間開 閉所	浸水防止扉	津波による損傷の防止機能	・扉等に有害な傷,損傷及び変形等がないこと。 ・扉の水密ゴムパッキンに有害な傷,変形,劣化がないこと。 ・扉を開閉させ,容易に開閉できること。	供給先の建家の管理		
	閉止板	津波による損傷の防止機能	・閉止板に有害な傷,損傷及び変形等がないこと。 ・閉止板と躯体壁のコーキング材に剝離,劣化等のないこと,固定ボルトの欠損,落下のないこと。	区域解除まで		

表 1-7 性能維持施設 (13/44)

設備名称	尔等	要求される機能	性能	維持すべき期間
分離精製工場(MP)	ガンマ線エリア モニタ	放射線管理施設(放射線測定機能)	・感度及び指示精度が正常であること。 ・警報が正常に作動すること。	分離精製工場の管理区域解 除まで
除染場 (DS)	ガンマ線エリア モニタ	放射線管理施設(放射線測定機能)	・感度及び指示精度が正常であること。 ・警報が正常に作動すること。	除染場の管理区域解除まで
分析所 (CB)	ガンマ線エリア モニタ	放射線管理施設(放射線測定機能)	・感度及び指示精度が正常であること。 ・警報が正常に作動すること。	分析所の管理区域解除まで
廃棄物処理場(AAF)	ガンマ線エリア モニタ	放射線管理施設(放射線測定機能)	・感度及び指示精度が正常であること。 ・警報が正常に作動すること。	廃棄物処理場の管理区域解 除まで
第二低放射性廃液蒸	ガンマ線エリア	放射線管理施設(放射線測定機能)	・感度及び指示精度が正常であること。	第二低放射性廃液蒸発処理
発処理施設(E)	モニタ		・警報が正常に作動すること。	施設の管理区域解除まで
第三低放射性廃液蒸	ガンマ線エリア	放射線管理施設(放射線測定機能)	・感度及び指示精度が正常であること。	第三低放射性廃液蒸発処理
発処理施設(Z)	モニタ		・警報が正常に作動すること。	施設の管理区域解除まで
放出廃液油分除去施	ガンマ線エリア	放射線管理施設(放射線測定機能)	・感度及び指示精度が正常であること。	放出廃液油分除去施設の管
設(C)	モニタ		・警報が正常に作動すること。	理区域解除まで
ウラン貯蔵所 (U03)	ガンマ線エリア モニタ	放射線管理施設(放射線測定機能)	・感度及び指示精度が正常であること。 ・警報が正常に作動すること。	ウラン貯蔵所の管理区域解 除まで
第二ウラン貯蔵所	ガンマ線エリア	放射線管理施設(放射線測定機能)	・感度及び指示精度が正常であること。	第二ウラン貯蔵所の管理区
(2U03)	モニタ		・警報が正常に作動すること。	域解除まで
第三ウラン貯蔵所	ガンマ線エリア	放射線管理施設(放射線測定機能)	・感度及び指示精度が正常であること。	第三ウラン貯蔵所の管理区
(3U03)	モニタ		・警報が正常に作動すること。	域解除まで
廃溶媒貯蔵場 (WS)	ガンマ線エリア モニタ	放射線管理施設(放射線測定機能)	・感度及び指示精度が正常であること。 ・警報が正常に作動すること。	廃溶媒貯蔵場の管理区域解 除まで
ウラン脱硝施設(DN)	ガンマ線エリア モニタ	放射線管理施設(放射線測定機能)	・感度及び指示精度が正常であること。 ・警報が正常に作動すること。	ウラン脱硝施設の管理区域 解除まで
高放射廃液貯蔵場	ガンマ線エリア	放射線管理施設(放射線測	・感度及び指示精度が正常であること。	高放射廃液貯蔵場の管理区
(HAW)	モニタ	定機能)	・警報が正常に作動すること。	域解除まで
焼却施設(IF)	ガンマ線エリア	放射線管理施設(放射線測	・感度及び指示精度が正常であること。	焼却施設の管理区域解除ま
	モニタ	定機能)	・警報が正常に作動すること。	で
プルトニウム転換技	ガンマ線エリア	放射線管理施設(放射線測定機能)	・感度及び指示精度が正常であること。	プルトニウム転換技術開発
術開発施設 (PCDF)	モニタ		・警報が正常に作動すること。	施設の管理区域解除まで

表 1-7 性能維持施設 (14/44)

設備名種	尔等	要求される機能	性能	維持すべき期間
廃溶媒処理技術開発	ガンマ線エリア	放射線管理施設(放射線測	・感度及び指示精度が正常であること。	廃溶媒処理技術開発施設の
施設(ST)	モニタ	定機能)	・警報が正常に作動すること。	管理区域解除まで
クリプトン回収技術	ガンマ線エリア	放射線管理施設(放射線測	・感度及び指示精度が正常であること。	クリプトン回収技術開発施
開発施設(Kr)	モニタ	定機能)	・警報が正常に作動すること。	設の管理区域解除まで
アスファルト固化処	ガンマ線エリア	放射線管理施設(放射線測	・感度及び指示精度が正常であること。	アスファルト固化処理施設
理施設 (ASP)	モニタ	定機能)	・警報が正常に作動すること。	の管理区域解除まで
ガラス固化技術開発	ガンマ線エリア	放射線管理施設(放射線測	・感度及び指示精度が正常であること。	ガラス固化技術開発施設の
施設(TVF)	モニタ	定機能)	・警報が正常に作動すること。	管理区域解除まで
第二高放射性固体廃棄物 貯 蔵 施 設(2HASWS)	ガンマ線エリア モニタ	放射線管理施設(放射線測定機能)	・感度及び指示精度が正常であること。 ・警報が正常に作動すること。	第二高放射性固体廃棄物貯 蔵施設の管理区域解除まで
アスファルト固化体	ガンマ線エリア	放射線管理施設(放射線測定機能)	・感度及び指示精度が正常であること。	アスファルト固化体貯蔵施
貯蔵施設(AS1)	モニタ		・警報が正常に作動すること。	設の管理区域解除まで
第二アスファルト固	ガンマ線エリア	放射線管理施設(放射線測	・感度及び指示精度が正常であること。	第二アスファルト固化体貯
化体貯蔵施設(AS2)	モニタ	定機能)	・警報が正常に作動すること。	蔵施設の管理区域解除まで
低放射性濃縮廃液貯	ガンマ線エリア	放射線管理施設(放射線測	・感度及び指示精度が正常であること。	低放射性濃縮廃液貯蔵施設
蔵施設(LWSF)	モニタ	定機能)	・警報が正常に作動すること。	の管理区域解除まで
分離精製工場(MP)	中性子線エリア	放射線管理施設(放射線測	・感度及び指示精度が正常であること。	分離精製工場の管理区域解
	モニタ	定機能)	・警報が正常に作動すること。	除まで
プルトニウム転換技	中性子線エリア	放射線管理施設(放射線測	・感度及び指示精度が正常であること。	プルトニウム転換技術開発
術開発施設 (PCDF)	モニタ	定機能)	・警報が正常に作動すること。	施設の管理区域解除まで
分離精製工場(MP)	ベータ線ダスト モニタ	放射線管理施設(空気中の 放射性物質濃度測定機能)	・計数効率及び指示精度が正常である こと。 ・警報が正常に作動すること。	分離精製工場の管理区域解 除まで
除染場(DS)	ベータ線ダスト モニタ	放射線管理施設(空気中の 放射性物質濃度測定機能)	・計数効率及び指示精度が正常である こと。 ・警報が正常に作動すること。	除染場の管理区域解除まで
分析所(CB)	ベータ線ダスト モニタ	放射線管理施設(空気中の 放射性物質濃度測定機能)	・計数効率及び指示精度が正常である こと。 ・警報が正常に作動すること。	分析所の管理区域解除まで

表 1-7 性能維持施設 (15/44)

設備名種	尔等	要求される機能	性能	維持すべき期間
廃棄物処理場(AAF)	ベータ線ダスト モニタ	放射線管理施設(空気中の 放射性物質濃度測定機能)	・計数効率及び指示精度が正常である こと。 ・警報が正常に作動すること。	廃棄物処理場の管理区域解 除まで
放出廃液油分除去施 設(C)	ベータ線ダスト モニタ	放射線管理施設(空気中の 放射性物質濃度測定機能)	・計数効率及び指示精度が正常である こと。 ・警報が正常に作動すること。	放出廃液油分除去施設の管 理区域解除まで
ウラン脱硝施設(DN)	ベータ線ダスト モニタ	放射線管理施設(空気中の 放射性物質濃度測定機能)	・計数効率及び指示精度が正常である こと。 ・警報が正常に作動すること。	ウラン脱硝施設の管理区域 解除まで
高放射性廃液貯蔵場 (HAW)	ベータ線ダスト モニタ	放射線管理施設(空気中の 放射性物質濃度測定機能)	・計数効率及び指示精度が正常である こと。 ・警報が正常に作動すること。	高放射性廃液貯蔵場の管理 区域解除まで
焼却施設(IF)	ベータ線ダスト モニタ	放射線管理施設(空気中の 放射性物質濃度測定機能)	・計数効率及び指示精度が正常である こと。 ・警報が正常に作動すること。	焼却施設の管理区域解除ま で
廃溶媒処理技術開発 施設(ST)	ベータ線ダスト モニタ	放射線管理施設(空気中の 放射性物質濃度測定機能)	・計数効率及び指示精度が正常である こと。 ・警報が正常に作動すること。	廃溶媒処理技術開発施設の 管理区域解除まで
アスファルト固化処 理施設 (ASP)	ベータ線ダスト モニタ	放射線管理施設(空気中の 放射性物質濃度測定機能)	・計数効率及び指示精度が正常である こと。 ・警報が正常に作動すること。	アスファルト固化処理施設 の管理区域解除まで
ガラス固化技術開発 施設(TVF)	ベータ線ダスト モニタ	放射線管理施設(空気中の 放射性物質濃度測定機能)	・計数効率及び指示精度が正常である こと。 ・警報が正常に作動すること。	ガラス固化技術開発施設の 管理区域解除まで
第二高放射性固体廃棄物 貯 蔵 施 設 (2HASWS)	ベータ線ダスト モニタ	放射線管理施設(空気中の 放射性物質濃度測定機能)	・計数効率及び指示精度が正常である こと。 ・警報が正常に作動すること。	第二高放射性固体廃棄物貯 蔵施設の管理区域解除まで
第二アスファルト固 化体貯蔵施設(AS2)	ベータ線ダスト モニタ	放射線管理施設(空気中の 放射性物質濃度測定機能)	・計数効率及び指示精度が正常である こと。 ・警報が正常に作動すること。	第二アスファルト固化体貯 蔵施設の管理区域解除まで

表 1-7 性能維持施設 (16/44)

設備名称	尔等		要求される機能	性能	維持すべき期間
低放射性濃縮廃液貯 蔵施設(LWSF)	ベータ線ダスト モニタ		放射線管理施設(空気中の 放射性物質濃度測定機能)	・計数効率及び指示精度が正常である こと。 ・警報が正常に作動すること。	低放射性濃縮廃液貯蔵施設 の管理区域解除まで
分離精製工場(MP)	プルトコストモコ		放射線管理施設(空気中の 放射性物質濃度測定機能)	・計数効率及び指示精度が正常である こと。 ・警報が正常に作動すること。	分離精製工場の管理区域解 除まで
分析所(CB)	プルトコストモコ		放射線管理施設(空気中の 放射性物質濃度測定機能)	・計数効率及び指示精度が正常である こと。 ・警報が正常に作動すること。	分析所の管理区域解除まで
プルトニウム転換技 術開発施設 (PCDF)	プルトコストモコ	ニウムダ ニタ	放射線管理施設(空気中の 放射性物質濃度測定機能)	・計数効率及び指示精度が正常である こと。 ・警報が正常に作動すること。	プルトニウム転換技術開発 施設の管理区域解除まで
主排気筒	排気モニタ		放射線管理施設(排気中の 放射性物質濃度測定機能)	・感度、計数効率及び指示精度が所定 の値であること。 ・警報が正常に作動すること。	排気元の建家の管理区域解 除まで
第一付属排気筒	排気モニ	ニタ	放射線管理施設(排気中の 放射性物質濃度測定機能)	・感度、計数効率及び指示精度が所定 の値であること。 ・警報が正常に作動すること。	排気元の建家の管理区域解 除まで
第二付属排気筒	排気モニ	ニタ	放射線管理施設(排気中の 放射性物質濃度測定機能)	・感度,計数効率及び指示精度が所定 の値であること。 ・警報が正常に作動すること。	排気元の建家の管理区域解 除まで
分析所(CB)	排気 モニタ	局所 排気	放射線管理施設(排気中の 放射性物質濃度測定機能)	・計数効率及び指示精度が正常である こと。 ・警報が正常に作動すること。	分析所の管理区域解除まで
廃棄物処理場(AAF)	排気 モニタ	局所 排気	放射線管理施設(排気中の 放射性物質濃度測定機能)	・計数効率及び指示精度が正常である こと。 ・警報が正常に作動すること。	廃棄物処理場の管理区域解 除まで
第二低放射性廃液蒸 発処理施設(E)	排気 モニタ	局所 排気	放射線管理施設(排気中の 放射性物質濃度測定機能)	・感度,計数効率及び指示精度が正常であること。 ・所定の値で警報が作動すること。	第二低放射性廃液蒸発処理 施設の管理区域解除まで

表 1-7 性能維持施設 (17/44)

設備名称	尔等		要求される機能	性能	維持すべき期間
第三低放射性廃液蒸 発処理施設(Z)	排気 モニタ	局所 排気	放射線管理施設(排気中の 放射性物質濃度測定機能)	・感度、計数効率及び指示精度が正常であること。 ・所定の値で警報が作動すること。	第三低放射性廃液蒸発処理 施設の管理区域解除まで
放出廃液油分除去施 設(C)	排気 モニタ	局所 排気	放射線管理施設(排気中の 放射性物質濃度測定機能)	・計数効率及び指示精度が正常である こと。 ・警報が正常に作動すること。	放出廃液油分除去施設の管 理区域解除まで
ウラン脱硝施設(DN)	排気 モニタ	局所 排気	放射線管理施設(排気中の 放射性物質濃度測定機能)	・計数効率及び指示精度が正常であること。・警報が正常に作動すること。	ウラン脱硝施設の管理区域 解除まで
第二スラッジ貯蔵場 (LW2)	排気 モニタ	局所 排気	放射線管理施設(排気中の 放射性物質濃度測定機能)	・計数効率及び指示精度が正常である こと。 ・警報が正常に作動すること。	第二スラッジ貯蔵場の管理 区域解除まで
焼却施設(IF)	排気 モニタ	局所 排気	放射線管理施設(排気中の 放射性物質濃度測定機能)	・計数効率及び指示精度が正常である こと。 ・警報が正常に作動すること。	焼却施設の管理区域解除ま で
第二高放射性固体廃棄物 貯 蔵 施 設 (2HASWS)	排気 モニタ	局所 排気	放射線管理施設(排気中の 放射性物質濃度測定機能)	・計数効率及び指示精度が正常である こと。 ・警報が正常に作動すること。	第二高放射性固体廃棄物貯 蔵施設の管理区域解除まで
アスファルト固化体 貯蔵施設(AS1)	排気 モニタ	局所 排気	放射線管理施設(排気中の 放射性物質濃度測定機能)	・感度、計数効率及び指示精度が正常 であること。 ・警報が正常に作動すること。	アスファルト固化体貯蔵施 設の管理区域解除まで
第二アスファルト固 化体貯蔵施設(AS2)	排気 モニタ	局所 排気	放射線管理施設(排気中の 放射性物質濃度測定機能)	・感度、計数効率及び指示精度が正常 であること。 ・警報が正常に作動すること。	第二アスファルト固化体貯 蔵施設の管理区域解除まで
モニタリングステー ション	ガンマ糸 計	泉線量率	放射線管理施設(放射線測定機能)	・感度及び指示精度が正常であること。・警報が正常に作動すること。	全ての建家の管理区域解除まで
モニタリングポスト	ガンマ糸 計	泉線量率	放射線管理施設(放射線測定機能)	・感度及び指示精度が正常であること。・警報が正常に作動すること。	全ての建家の管理区域解除まで

表 1-7 性能維持施設 (18/44)

			数11 □ □□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□		
	設備	着名称等	要求される機能	性能	維持すべき期間
	アル	レファ放射線測定器	放射線管理施設(放出水中の放射性 物質の濃度測定機能)	設備が正常に作動すること。	
排水モニタ リング設備	7	ータ放射線測定器	放射線管理施設(放出水中の放射性 物質の濃度測定機能)	設備が正常に作動すること。	全ての建家の管理区域解 除まで
	ガン	/マ放射線測定器	放射線管理施設(放出水中の放射性 物質の濃度測定機能)	設備が正常に作動すること。	
	移動	动式発電機 1 号機	事故対処(移動式発電機からの電源 供給機能)	周波数及び電圧が正常であること。	系統除染が完了するまで
	移動	动式発電機 2 号機	事故対処(移動式発電機からの電源 供給機能)	周波数及び電圧が正常であること。	系統除染が完了するまで
	接続	分離精製工場,高放射性廃液貯蔵場	事故対処(移動式発電機からの電源 供給機能)	絶縁抵抗が正常であること。	系統除染が完了するまで
	端子盤	ガラス固化技術開発 施設	事故対処(移動式発電機からの電源 供給機能)	絶縁抵抗が正常であること。	系統除染が完了するまで
	緊急	分離精製工場	事故対処(移動式発電機からの電源 供給機能)	絶縁抵抗が正常であること。	系統除染が完了するまで
緊急時対応 設備	電源	高放射性廃液貯蔵場	事故対処(移動式発電機からの電源 供給機能)	絶縁抵抗が正常であること。	系統除染が完了するまで
	接続盤	ガラス固化技術開発 施設	事故対処(移動式発電機からの電源 供給機能)	絶縁抵抗が正常であること。	系統除染が完了するまで
	重	ホイールローダ	事故対処 (アクセスルートの確保機能)	外観に異常がなく、設備が正常に 作動すること。	系統除染が完了するまで
	機	油圧ショベル	事故対処 (アクセスルートの確保機能)	外観に異常がなく,設備が正常に 作動すること。	系統除染が完了するまで
	タン	/クローリー	事故対処(燃料運搬機能)	外観に異常がなく,設備が正常に 作動すること。	系統除染が完了するまで
	水植車	曹付き消防ポンプ自動	事故対処 (崩壊熱除去及び放出抑制 のための水の供給機能)	外観に異常がなく,設備が正常に 作動すること。	系統除染が完了するまで

表 1-7 性能維持施設 (19/44)

	設備	第名 科	· · · 等	要求される機能	性能	維持すべき期間		
	化当	学消[2		事故対処(崩壊熱除去及び放出抑制 のための水の供給機能)	外観に異常がなく,設備が正常に 作動すること。	系統除染が完了するまで		
		MCA 携帯型無線機		事故対処(通信機能)	外観に異常がなく,設備が正常に 作動すること。	系統除染が完了するまで		
	通 信	衛星	星電話	事故対処(通信機能)	外観に異常がなく,設備が正常に 作動すること。	系統除染が完了するまで		
	機材	簡易無線機		事故対処(通信機能)	外観に異常がなく,設備が正常に 作動すること。	系統除染が完了するまで		
		トランシーバ		事故対処(通信機能)	外観に異常がなく、設備が正常に 作動すること。	系統除染が完了するまで		
	御室気術	 上制	空気循環装置	事故対処(制御室の空気循環機能)	員数及び外観に異常がなく,設備 が正常に作動すること。	系統除染が完了するまで		
		盾環	可搬型入気装置	事故対処(制御室の空気循環機能)	員数及び外観に異常がなく,設備 が正常に作動すること。	系統除染が完了するまで		
緊急時対応 設備	用核	幾材	エアロック用グ リーンハウス	事故対処(制御室の空気循環機能)	員数及び外観に異常がなく,設備 が正常に作動すること。	系統除染が完了するまで		
	可搬型発電機		É電機	事故対処 (工程監視設備への電源供 給機能)	員数及び外観に異常がなく,設備 が正常に作動すること。	系統除染が完了するまで		
	予備	予備循環ポンプ排風機ブロワ		予備循環ポンプ		事故対処(崩壊熱除去機能)	外観に異常がなく、設備が正常に 作動すること。	系統除染が完了するまで
	排風			排風機		事故対処(水素掃気機能)	外観に異常がなく、設備が正常に 作動すること。	系統除染が完了するまで
	ブロ			事故対処(水素掃気機能)	外観に異常がなく、設備が正常に 作動すること。	系統除染が完了するまで		
	可擠	設型系	É電機	事故対処 (可搬式圧縮機への電源供 給機能)	員数及び外観に異常がなく,設備 が正常に作動すること。	系統除染が完了するまで		
	可擠	般式归	三縮機	事故対処(水素掃気機能)	員数及び外観に異常がなく,設備 が正常に作動すること。	系統除染が完了するまで		
	可撓	般式归	三縮機	事故対処(計装設備への圧空供給機 能)	員数及び外観に異常がなく,設備 が正常に作動すること。	系統除染が完了するまで		

表 1-7 性能維持施設 (20/44)

	設備名称等	 	要求される機能	性能	維持すべき期間
	エンジン付き	きポンプ	事故対処(崩壊熱除去機能)	員数及び外観に異常がなく,設備 が正常に作動すること。	系統除染が完了するまで
	可搬型蒸気 供給設備	ボイラ, 燃料タン ク等	事故対処 (放射性物質の漏えい 対処機能)	員数及び外観に異常がなく,設備 が正常に作動すること。	系統除染が完了するまで
		タングステン製 防護服	事故対処 (事故対応要員の放射 線防護機能)	員数及び外観に異常がないこと。	系統除染が完了するまで
	高線量対応 防護服類	タングステンエ プロン	事故対処 (事故対応要員の放射 線防護機能)	員数及び外観に異常がないこと。	系統除染が完了するまで
		鉛エプロン	事故対処 (事故対応要員の放射 線防護機能)	員数及び外観に異常がないこと。	系統除染が完了するまで
緊急時対応	一次冷却水街		事故対処(崩壊熱除去機能)	外観に異常がなく,設備が正常に 作動すること。	系統除染が完了するまで
設備	二次冷却水循環ポンプ		事故対処(崩壊熱除去機能)	外観に異常がなく,設備が正常に 作動すること。	系統除染が完了するまで
	可搬型ブロワ		事故対処(水素掃気機能)	員数及び外観に異常がなく,設備 が正常に作動すること。	系統除染が完了するまで
	可搬式圧縮機		事故対処(水素掃気機能)	員数及び外観に異常がなく,設備 が正常に作動すること。	系統除染が完了するまで
	可搬型発電機	幾	事故対処(電源供給機能)	員数及び外観に異常がなく,設備 が正常に作動すること。	系統除染が完了するまで
	TVF 制御室 空気循環用	給気ユニット	事故対処 (制御室の空気循環機 能)	員数及び外観に異常がなく,設備 が正常に作動すること。	系統除染が完了するまで
	機材	空気循環装置	事故対処 (制御室の空気循環機 能)	員数及び外観に異常がなく,設備 が正常に作動すること。	系統除染が完了するまで
	λ-> Δ.η. <u>1</u> -#-	圧力上限緊急操 作装置[I]	安全保護回路	圧力上限緊急操作装置が 9.98 kPaGauge 以下で作動すること。	系統除染が完了するまで
分離精製工 場(MP)	溶解槽	圧力上限緊急操 作装置[Ⅱ]	安全保護回路	圧力上限緊急操作装置が 19.6 kPaGauge 以下で作動すること。	系統除染が完了するまで
	溶解槽溶液 受槽	密度制御操作装置	核燃料物質の臨界防止機能	密度制御操作装置が密度制限値 1.4 g/cm³以下で作動すること。	系統除染が完了するまで

表 1-7 性能維持施設 (21/44)

			2011 工化作的 加快	· · · · · · · · · · · · · · · · · · ·		
	設備名称等	等	要求される機能	性能	維持すべき期間	
	第1ストリ	温度上限操作上 限警報装置	火災等による損傷の防止機能	温度上限操作上限警報装置が温度制限値 74 ℃以下で作動すること。	系統除染が完了 するまで	
	ップ調整槽	電導度上限操作 上限警報装置	核燃料物質の臨界防止機能	電導度上限操作上限警報装置が 2.670 S/m 以下 (0.045 mol/L以下) で作動すること。	系統除染が完了 するまで	
	温水器	温度上限操作上 限警報装置	火災等による損傷の防止機能	温度上限操作上限警報装置が温度制限値 74 ℃以下で作動すること。	系統除染が完了 するまで	
	第2ストリップ調整槽	電導度下限操作 装置	核燃料物質の臨界防止機能	電導度下限操作装置が 8.344 S/m 以上(0.18 mol/L 以上) で作動すること。	系統除染が完了 するまで	
	第3ストリップ調整槽	電導度下限操作 装置	核燃料物質の臨界防止機能	電導度下限操作装置が 8.344 S/m 以上(0.18 mol/L 以上) で作動すること。	系統除染が完了 するまで	
	第 1 スクラ ブ調整槽	密度下限操作装置	核燃料物質の臨界防止機能	密度下限操作装置が 5.330 kPaGauge 以上 (2.81 mol/L以上) で作動すること。	系統除染が完了 するまで	
	第3スクラ ブ調整槽	電導度下限操作 装置	核燃料物質の臨界防止機能	電導度下限操作装置が 31.616 S/m 以上 (0.9 mol/L 以上) で作動すること。	系統除染が完了 するまで	
分離精製工 場(MP)		流量低下緊急操 作装置	安全保護回路	流量低下緊急操作装置が 58 L/h 以上で作動 すること。		
		作装置		安全保護回路	流量低下緊急操作装置が 2.32 L/h 以上で作動すること。	
			流量低下緊急操 作装置	安全保護回路	流量低下緊急操作装置が 295.6 L/h 以上で 作動すること。	
	抽出器	流量低下緊急操 作装置	安全保護回路	流量低下緊急操作装置が 38.38 L/h 以上で 作動すること。	系統除染が完了	
	7川口布	流量低下緊急操 作装置	安全保護回路	流量低下緊急操作装置が 106.4 L/h 以上で 作動すること。	するまで	
		流量低下緊急操 作装置	安全保護回路	流量低下緊急操作装置が 452 L/h 以上で作動すること。		
		流量低下緊急操 作装置	安全保護回路	流量低下緊急操作装置が 67.28 L/h 以上で 作動すること。		
		流量低下緊急操 作装置	安全保護回路	流量低下緊急操作装置が 4.6 L/h 以上で作動すること。		

表 1-7 性能維持施設 (22/44)

設備名称等		要求される機能	性能	維持すべき期間	
		流量低下緊急操作装置	安全保護回路	流量低下緊急操作装置が 420.6 L/h 以上で作動すること。	
		流量低下緊急操作装置	安全保護回路	流量低下緊急操作装置が 15.72 L/h 以上で作動すること。	
		流量低下緊急操作装置	安全保護回路	流量低下緊急操作装置が 8.53 L/h 以上で作動すること。	
		流量低下緊急操作装置	安全保護回路	流量低下緊急操作装置が 10.58 L/h 以上で作動すること。	
		流量低下緊急操作装置	安全保護回路	流量低下緊急操作装置が 11.91 L/h 以上で作動すること。	
		流量低下緊急操作装置	安全保護回路	流量低下緊急操作装置が 295.6 L/h 以上で作動すること。	
		流量低下緊急操作装置	安全保護回路	流量低下緊急操作装置が333.25 L/h 以上で作動すること。	
分離精製工場 (MP)	抽出器	流量低下緊急操作装置	安全保護回路	流量低下緊急操作装置が 9.80 L/h 以上で作動すること。	系統除染が完了 するまで
		流量低下緊急操作装置	安全保護回路	流量低下緊急操作装置が 36.6 L/h 以上で作動すること。	
		流量低下緊急操作装置	安全保護回路	流量低下緊急操作装置が 8.83 L/h 以上で作動すること。	
		流量低下緊急操作装置	安全保護回路	流量低下緊急操作装置が 368.25 L/h 以上で作動すること。	
		溶媒流量上限警報装置	核燃料物質の臨界防止機能	溶媒流量上限警報装置が 381 L/h 以下で作動すること。	
		溶媒流量上限警報装置	核燃料物質の臨界防止機能	溶媒流量上限警報装置が 380.65 L/h 以下で作動すること。	
		溶媒流量上限警報装置	核燃料物質の臨界防止機能	溶媒流量上限警報装置が 450.86 L/h 以下で作動すること。	
		溶媒流量上限警報装置	核燃料物質の臨界防止機能	溶媒流量上限警報装置が 451.25 L/h 以下で作動すること。	

表 1-7 性能維持施設 (23/44)

			要求される機能	性能	維持すべき期間	
		圧力上限緊急操作 装置	安全保護回路	圧力上限緊急操作装置が 19.37 kPaGauge以下で作動すること。	7 277113	
		温度上限緊急操作 装置	安全保護回路	温度上限緊急操作装置が 123.6 ℃以 下で作動すること。		
	プルトニウム 溶液蒸発缶	蒸発缶加熱蒸気温 度警報装置	火災等による損傷の防止機能	蒸発缶加熱蒸気温度警報装置が温度 制限値 135 ℃以下で作動すること。	系統除染が完了 するまで	
		加熱蒸気凝縮水放 射性物質検知装置	閉じ込めの機能	加熱蒸気凝縮水放射性物質検知装置 が 5200 cpm 以下で作動すること。		
分離精製工		密度上限警報装置	火災等による損傷の防止機能	密度上限警報装置が 8.025 kPaGauge 以下で作動すること。		
場(MP)		液面上限緊急操作 装置[I]	安全保護回路	液面上限緊急操作装置が 3.262 kPaGauge以下で作動すること。		
	ウラン溶液蒸 発缶 (第1段)		液面上限緊急操作 装置[Ⅱ]	安全保護回路	液面上限緊急操作装置が 6.379 kPaGauge以下で作動すること。	
			蒸発缶加熱蒸気温 度警報装置	火災等による損傷の防止機能	蒸発缶加熱蒸気温度警報装置が温度 制限値 135 ℃以下で作動すること。	系統除染が完了 するまで
					温度上限緊急操作 装置	安全保護回路
		圧力上限操作上限 警報装置	火災等による損傷の防止機能	圧力上限操作上限警報装置が 200.0 kPaGauge 以下で作動すること。		
	UNH受槽	ウラン濃縮度記録 上限操作装置	核燃料物質の臨界防止機能	ウラン濃縮度記録上限操作装置がウラン濃縮度制限値 1.6 %以下で作動すること。		
ウニン・昭 7 3		密度指示上限操作 装置	核燃料物質の臨界防止機能	密度指示上限操作装置が密度制限値 1.6 g/cm³以下で作動すること。	女体吟 流ぶウマ	
ウラン脱硝 施設(DN)	溶解液受槽	密度指示上限操作 装置	核燃料物質の臨界防止機能	密度指示上限操作装置が密度制限値 1.6 g/cm³以下で作動すること。	系統除染が完了 するまで	
	脱硝塔	温度下限緊急操作 装置	安全保護回路	温度下限緊急操作装置が温度制限値 100 ℃以上で作動すること。		
	<i>川</i> ルルサ日・石	压力上限緊急操作 装置	安全保護回路	圧力上限緊急操作装置が 50.01 kPaGauge 以下で作動すること。		

表 1-7 性能維持施設 (24/44)

設備名称等		要求される機能	性能	維持すべき期間	
	酸回収蒸発缶	蒸発缶加熱蒸気温 度警報装置	火災等による損傷の防止機能	蒸発缶加熱蒸気温度警報装置が温度 制限値 135 ℃以下で作動すること。	系統除染が完了
		缶内圧力上限緊急 操作装置	閉じ込めの機能	缶内圧力上限緊急操作装置が 0.074 kPaGauge 以下で作動すること。	するまで
		圧力上限緊急操作 装置[I]	安全保護回路	圧力上限緊急操作装置が 9.98 kPaGauge以下で作動すること。	
		圧力上限緊急操作 装置[Ⅱ]	安全保護回路	圧力上限緊急操作装置が 19.97 kPaGauge以下で作動すること。	
		圧力上昇警報装置	閉じ込めの機能	圧力上昇警報装置が 0.15 kPaGauge 以下で作動すること。	
		蒸発缶加熱蒸気温 度警報装置	火災等による損傷の防止機能	蒸発缶加熱蒸気温度警報装置が温度 制限値 135 ℃以下で作動すること。	系統除染が完了
分離精製工 場(MP)	高放射性廃液 蒸発缶	圧力上限操作上限 警報装置	火災等による損傷の防止機能	圧力上限操作上限警報装置が 200 kPaGauge 以下で作動すること。	するまで
		温度上限操作上限 警報装置	火災等による損傷の防止機能	温度上限操作上限警報装置が 118.7 ℃以下で作動すること。	
		液位下限警報装置	火災等による損傷の防止機能	液位下限警報装置が 1.096 kPaGauge 以上で作動すること。	
		γ線上限警報装置	閉じ込めの機能	γ線上限警報装置が 0.51 mSv/h 以下で作動すること。	
		流量上昇警報装置	火災等による損傷の防止機能	流量上昇警報装置が 66.6 L/h 以下で 作動すること。	系統除染が完了 するまで
	高放射性廃液	温度上昇警報装置	閉じ込めの機能	温度上昇警報装置が 68.7 ℃以下で 作動すること。	系統除染が完了
	貯槽	槽内圧力上昇警報 装置	閉じ込めの機能	槽内圧力上昇警報装置が 0.54 kPaGauge 以下で作動すること。	するまで
高放射性廃 高放射性廃液	温度上昇警報装置	閉じ込めの機能	温度上昇警報装置が 68.4 ℃以下で 作動すること。	系統除染が完了	
(HAW)	攸 貯 厩 場 貯埔	温度上昇警報装置	閉じ込めの機能	温度上昇警報装置が 64.4 ℃以下で 作動すること。	するまで

表 1-7 性能維持施設 (25/44)

	設備名称等		要求される機能	性能	維持すべき期間
高放射性廃液貯蔵	高放射性廃液	温度上昇警報装置	閉じ込めの機能	温度上昇警報装置が 65.4 ℃以下 で作動すること。	系統除染が完了
場(HAW)	貯槽	槽内圧力上昇警報 装置	閉じ込めの機能	槽内圧力上昇警報装置が 0.529 kPaGauge 以下で作動すること。	するまで
分離精製工場(MP)	プルトニウム 製品貯槽	液位上昇警報装置	核燃料物質の臨界防止機 能	液位上昇警報装置が 0.800 kPaGauge 以下で作動すること。	系統除染が完了
刀触相殺工物(MF)	グローブボック ス	液位上限操作上限 警報装置	その他(漏えい検知機能)	液位上限操作上限警報装置が 30 mm 以下で作動すること。	するまで
廃棄物処理場 (AAF)	低放射性廃液 第1蒸発缶	圧力上限緊急操作 装置	火災等による損傷の防止 機能	圧力上限緊急操作装置が 200 kPaGauge以下で作動すること。	系統除染が完了 するまで
第二低放射性廃液 蒸発処理施設(E)	低放射性廃液 第2蒸発缶	圧力上限緊急操作 装置	火災等による損傷の防止 機能	圧力上限緊急操作装置が 162 kPaGauge以下で作動すること。	系統除染が完了 するまで
第三低放射性廃液 蒸発処理施設(Z)	低放射性廃液 第3蒸発缶	正力上限緊急操作 装置 圧力上限緊急操作 装置	火災等による損傷の防止 機能 火災等による損傷の防止 機能	圧力上限緊急操作装置が 158.7 kPaGauge 以下で作動すること。 圧力上限緊急操作装置が 168.6 kPaGauge 以下で作動すること。	系統除染が完了するまで
分離精製工場(MP)	蒸気凝縮水系	放射性物質検知装置	閉じ込めの機能	放射性物質検知装置が 3120 cpm 以 下で作動すること。	系統除染が完了
万無相殺工物(MF)	廃ガス貯槽	槽内圧力上昇警報 装置	閉じ込めの機能	槽内圧力上昇警報装置が 1050 kPaGauge 以下で作動すること。	するまで
分析所(CB)	建家及びセル	負圧警報装置	閉じ込めの機能	負圧警報装置が-1.031~-0.931 kPaGauge 以内で作動すること。	分析所の管理区
THE CO	換気系	負圧警報装置	閉じ込めの機能	負圧警報装置が-1.521~-1.421 kPaGauge 以内で作動すること。	域解除まで
分離精製工場(MP)	建家及びセル	負圧警報装置	閉じ込めの機能	負圧警報装置が-1.040∼-0.940 kPaGauge 以内で作動すること。	分離精製工場の 管理区域解除ま
	換気系	負圧警報装置	閉じ込めの機能	負圧警報装置が-1.250~-1.150 kPaGauge 以内で作動すること。	で
高放射性固体廃棄 物貯蔵庫 (HASWS)	セル換気系	負圧警報装置	閉じ込めの機能	負圧警報装置が-0.280~-0.160 kPaGauge 以内で作動すること。	高放射性固体廃 棄物貯蔵庫の管 理区域解除まで

表 1-7 性能維持施設 (26/44)

		12.1	1 工作的形式 加度 1	(20) 11)						
	設備名称等		要求される機能	性能	維持すべき期間					
廃棄物処理場	建家及びセル	負圧警報装置	閉じ込めの機能	負圧警報装置が-0.835~-0.735 kPaGauge 以内で作動すること。	廃棄物処理場の管理区					
(AAF)	換気系	負圧警報装置	閉じ込めの機能	負圧警報装置が-1.227~-1.127 kPaGauge 以内で作動すること。	域解除まで					
かーバナム自身は原文が		負圧警報装置	閉じ込めの機能	負圧警報装置が-0.162~-0.134 kPaGauge 以内で作動すること。	然→ /ぼ.+5.61.14.1克汤·芋.7%					
第二低放射性廃液 蒸発処理施設 (E)	建家及びセル 換気系	負圧警報装置	閉じ込めの機能	負圧警報装置が-0.064~-0.036 kPaGauge 以内で作動すること。	第二低放射性廃液蒸発 処理施設の管理区域解 除まで					
(E)		負圧警報装置	閉じ込めの機能	負圧警報装置が 0.460~ 0.520 kPaGauge 以内で作動すること。	がよ (
		負圧警報装置	閉じ込めの機能	負圧警報装置が-0.113~-0.085 kPaGauge 以内で作動すること。						
第三低放射性廃液	建家及びセル換気系	•	建家及びセル	建家及びセル	建家及びセル	建家及びセル	負圧警報装置	閉じ込めの機能	負圧警報装置が-0.157~-0.139 kPaGauge 以内で作動すること。	第三低放射性廃液蒸発 処理施設の管理区域解
蒸発処理施設 (Z)			負圧警報装置	閉じ込めの機能	負圧警報装置が-0.044~-0.016 kPaGauge 以内で作動すること。	除まで				
		負圧警報装置	閉じ込めの機能	負圧警報装置が 0.384~ 0.402 kPaGauge 以内で作動すること。						
第二スラッジ貯蔵	建家及びセル	負圧警報装置	閉じ込めの機能	負圧警報装置が-0.118~-0.080 kPaGauge 以内で作動すること。	第二スラッジ貯蔵場の					
場(LW2)	換気系	負圧警報装置	閉じ込めの機能	負圧警報装置が-0.069~-0.031 kPaGauge 以内で作動すること。	管理区域解除まで					
		負圧警報装置	閉じ込めの機能	負圧警報装置が-0.167~-0.129 kPaGauge 以内で作動すること。						
廃溶媒貯蔵場 (WS)	建家及びセル 換気系	負圧警報装置	閉じ込めの機能	負圧警報装置が 0.080~0.118 kPaGauge 以内で作動すること。	廃溶媒貯蔵場の管理区 域解除まで					
		負圧警報装置	閉じ込めの機能	負圧警報装置が 0.932~ 1.030 kPaGauge 以内で作動すること。						
放出廃液油分除去 施設(C)	建家換気系	負圧警報装置	閉じ込めの機能	負圧警報装置が 0.575~0.603 kPaGauge 以内で作動すること。	放出廃液油分除去施設 の管理区域解除まで					

表 1-7 性能維持施設 (27/44)

	設備名称等		要求される機能	性能	維持すべき期間
ウラン脱硝施設 (DN)	建家換気系	負圧警報装置	閉じ込めの機能	負圧警報装置が-1.224~-1.130 kPaGauge 以内で作動すること。	ウラン脱硝施設の管理 区域解除まで
高放射性廃液貯蔵	建家及びセル	負圧警報装置	閉じ込めの機能	負圧警報装置が-0.432~-0.354 kPaGauge 以内で作動すること。	高放射性廃液貯蔵場の
場(HAW)	換気系	負圧警報装置	閉じ込めの機能	負圧警報装置が-0.226~-0.168 kPaGauge 以内で作動すること。	管理区域解除まで
焼却施設(IF)	建家換気系	負圧警報装置	閉じ込めの機能	負圧警報装置が 0.549~ 0.627 kPaGauge 以内で作動すること。	焼却施設の管理区域解
光却爬成(17)	建 条换	負圧警報装置	閉じ込めの機能	負圧警報装置が 0.354~ 0.432 kPaGauge 以内で作動すること。	除まで
アスファルト固化	建家及びセル	負圧警報装置	閉じ込めの機能	負圧警報装置が 0.549~ 0.627 kPaGauge 以内で作動すること。	アスファルト固化体貯 蔵施設の管理区域解除
体貯蔵施設(AS1)	換気系	負圧警報装置	閉じ込めの機能	負圧警報装置が 0.931~ 1.029 kPaGauge 以内で作動すること。	まで まで
第二アスファルト 固化体貯蔵施設	建家及びセル換気系	負圧警報装置	閉じ込めの機能	負圧警報装置が 1.127~ 1.225 kPaGauge 以内で作動すること。	 第二アスファルト固化 体貯蔵施設の管理区域
(AS2)		負圧警報装置	閉じ込めの機能	負圧警報装置が 0.491~ 0.589 kPaGauge 以内で作動すること。	解除まで
第二高放射性固体 廃棄物貯蔵施設 (2HASWS)	建家及びセル 換気系	負圧警報装置	閉じ込めの機能	負圧警報装置が-0.226~-0.168 kPaGauge 以内で作動すること。	第二高放射性固体廃棄 物貯蔵施設の管理区域 解除まで
アスファルト固化	建家及びセル	負圧警報装置	閉じ込めの機能	負圧警報装置が 0.930~ 1.030 kPaGauge 以内で作動すること。	 アスファルト固化処理 施設の管理区域解除ま
処理施設(ASP)	換気系	負圧警報装置	閉じ込めの機能	負 圧 警 報 装 置 が -22.9 ~ -17.1 PaGauge 以内で作動すること。	で
廃溶媒処理技術開 発施設(ST)	建家及びセル 換気系	負圧警報装置	閉じ込めの機能	負圧警報装置が-0.196~-0.138 kPaGauge 以内で作動すること。	廃溶媒処理技術開発施 設の管理区域解除まで
ガラス固化技術開	建家及びセル	負圧警報装置	閉じ込めの機能	負圧警報装置が 2.581~ 2.713 kPaGauge 以内で作動すること。	ガラス固化技術開発施
発施設(TVF)	換気系	負圧警報装置	閉じ込めの機能	負圧警報装置が 0.560~ 0.618 kPaGauge 以内で作動すること。	設の管理区域解除まで

表 1-7 性能維持施設 (28/44)

	設備名称等			性能	維持すべき期間
	以湘石你寺				推行 9 × > 2 初间
		負圧警報装置	閉じ込めの機能	負圧警報装置が-0.275 ∼-0.217 kPaGauge 以内で作動すること。	
		負圧警報装置	閉じ込めの機能	負圧警報装置が−62.8 ~ −55.0 PaGauge 以内で作動すること。	
ガラス固化技術開 発施設(TVF)	建家及びセル換 気系	負圧警報装置	閉じ込めの機能	負圧警報装置が-72.6 ~ -64.8 PaGauge 以内で作動すること。	ガラス固化技術開発施 設の管理区域解除まで
		負圧警報装置	閉じ込めの機能	負圧警報装置が-0.128 ∼-0.070 kPaGauge 以内で作動すること。	
		負圧警報装置	閉じ込めの機能	負圧警報装置が−21.6 ~ −17.8 PaGauge 以内で作動すること。	
プルトニウム転換	建家及びセル換 気系	負圧警報装置	閉じ込めの機能	負圧警報装置(上限)が-170.0 ~ -130.0 PaGauge 以内,負圧警報装置 (下限)が-410.0∼-370.0 PaGauge 以内で作動すること。	プルトニウム転換技術 開発施設の管理区域解
技術開発施設 (PCDF)		気系	負圧警報装置	閉じ込めの機能	負圧警報装置(上限)が-30.0 ~ 0.0 PaGauge 以内, 負圧警報装置 (下限)が-78.0 ~-38.0 PaGauge 以内で作動すること。
クリプトン回収技	建家及びセル換	負圧警報装置	閉じ込めの機能	負圧警報装置が-0.078 ∼-0.060 kPaGauge 以内で作動すること。	クリプトン回収技術開 発施設の管理区域解除
術開発施設(Kr)	気系	負圧警報装置	閉じ込めの機能	負 圧 警 報 装 置 が -32.4 ~ -26.6 PaGauge 以内で作動すること。	光旭段の自生区域解除
		温度警報装置	火災等による損傷 の防止機能	温度警報装置が 72.2 ℃以下で作動 すること。	
分析所(CB)	セル等	漏洩検知装置	閉じ込めの機能	漏洩検知装置が 1.673 kPaGauge 以 下で作動すること。	系統除染が完了するま で
		漏洩検知装置	閉じ込めの機能	漏洩検知装置が 0.832 kPaGauge 以下で作動すること。	
分離精製工場 (MP)	セル等	温度警報装置	火災等による損傷 の防止機能	温度警報装置が 73.6 ℃以下で作動 すること。	系統除染が完了するま で

表 1-7 性能維持施設 (29/44)

	設備名称等	· · ·	要求される機能	性能	維持すべき期間
		温度警報装置	火災等による損傷の 防止機能	温度警報装置が72.2 ℃以下で作動すること。	
		漏洩検知装置	閉じ込めの機能	漏洩検知装置が 0.250 kPaGauge 以下で作動すること。	
		漏洩検知装置	閉じ込めの機能	漏洩検知装置が 0.834 kPaGauge 以下で作動すること。	
		漏洩検知装置	閉じ込めの機能	漏洩検知装置が 0.688 kPaGauge 以下で作動すること。	
		漏洩検知装置	閉じ込めの機能	漏洩検知装置が 0.911 kPaGauge 以下で作動すること。	
		漏洩検知装置	閉じ込めの機能	漏洩検知装置が 0.530 kPaGauge 以下で作動すること。	
		漏洩検知装置	閉じ込めの機能	漏洩検知装置が 0.707 kPaGauge 以下で作動すること。	
分離精製工場 (MP)	セル等	漏洩検知装置	閉じ込めの機能	漏洩検知装置が 0.926 kPaGauge 以下で作動すること。	系統除染が完了するまで
		漏洩検知装置	閉じ込めの機能	漏洩検知装置が 0.541 kPaGauge 以下で作動すること。	
		漏洩検知装置	閉じ込めの機能	漏洩検知装置が 0.593 kPaGauge 以下で作動すること。	
		漏洩検知装置	閉じ込めの機能	漏洩検知装置が 0.363 kPaGauge 以下で作動すること。	
		漏洩検知装置	閉じ込めの機能	漏洩検知装置が 0.471 kPaGauge 以下で作動すること。	
		漏洩検知装置	閉じ込めの機能	漏洩検知装置が 1.083 kPaGauge 以下で作動すること。	
		漏洩検知装置	閉じ込めの機能	漏洩検知装置が 0.577 kPaGauge 以下で作動すること。	
		漏洩検知装置	閉じ込めの機能	漏洩検知装置が 0.888 kPaGauge 以下で作動すること。	

表 1-7 性能維持施設 (30/44)

	設備名称等		要求される機能	性能	維持すべき期間
	2-0N 1-1-1	漏洩検知装置	閉じ込めの機能	漏洩検知装置が 0.922 kPaGauge 以下で作動すること。	
		漏洩検知装置	閉じ込めの機能	漏洩検知装置が 0.334 kPaGauge 以下で作動すること。	
		漏洩検知装置	閉じ込めの機能	漏洩検知装置が 0.284 kPaGauge 以下で 作動すること。	
		漏洩検知装置	閉じ込めの機能	漏洩検知装置が 0.621 kPaGauge 以下で 作動すること。	
		漏洩検知装置	閉じ込めの機能	漏洩検知装置が 0.421 kPaGauge 以下で 作動すること。	
		漏洩検知装置	閉じ込めの機能	漏洩検知装置が 0.371 kPaGauge 以下で作動すること。	
		漏洩検知装置	閉じ込めの機能	漏洩検知装置が 0.513 kPaGauge 以下で 作動すること。	
分離精製工場(MP)	セル等	漏洩検知装置	閉じ込めの機能	漏洩検知装置が 0.432 kPaGauge 以下で作動すること。	系統除染が完了する まで
		漏洩検知装置	閉じ込めの機能	漏洩検知装置が 0.451 kPaGauge 以下で作動すること。	
		漏洩検知装置	閉じ込めの機能	漏洩検知装置が 0.272 kPaGauge 以下で 作動すること。	
		漏洩検知装置	閉じ込めの機能	漏洩検知装置が 0.800 kPaGauge 以下で 作動すること。	
		漏洩検知装置	閉じ込めの機能	漏洩検知装置が 0.828 kPaGauge 以下で 作動すること。	
		漏洩検知装置	閉じ込めの機能	漏洩検知装置が 0.403 kPaGauge 以下で作動すること。	
		漏洩検知装置	閉じ込めの機能	漏洩検知装置が 0.341 kPaGauge 以下で作動すること。	
		漏洩検知装置	閉じ込めの機能	漏洩検知装置が 0.517 kPaGauge 以下で作動すること。	

表 1-7 性能維持施設 (31/44)

	設備名称等		要求される機能	性能	維持すべき期間	
		漏洩検知装置	閉じ込めの機能	漏洩検知装置が 0.387 kPaGauge 以下で 作動すること。	When 4 \ C \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
		漏洩検知装置	閉じ込めの機能	漏洩検知装置が 0.832 kPaGauge 以下で作動すること。		
分離精製工場(MP)	セル等	漏洩検知装置	閉じ込めの機能	漏洩検知装置が 0.383 kPaGauge 以下で 作動すること。	系統除染が完了する	
万两此作为文上勿(MI)	C/V 4	漏洩検知装置	閉じ込めの機能	漏洩検知装置が 0.741 kPaGauge 以下で 作動すること。	まで	
		漏洩検知装置	閉じ込めの機能	漏洩検知装置が 0.692 kPaGauge 以下で 作動すること。		
		漏洩検知装置	閉じ込めの機能	漏洩検知装置が 0.334 kPaGauge 以下で作動すること。		
ウラン脱硝施設	セル等	漏洩検知装置	閉じ込めの機能	漏洩検知装置が 0.499 kPaGauge 以下で 作動すること。	系統除染が完了する	
(DN)	C/V 4	漏洩検知装置	閉じ込めの機能	漏洩検知装置が 0.509 kPaGauge 以下で 作動すること。	まで	
			漏洩検知装置	閉じ込めの機能	漏洩検知装置が 0.627 kPaGauge 以下で 作動すること。	
高放射性廃液貯蔵 場(HAW)	セル等	漏洩検知装置	閉じ込めの機能	漏洩検知装置が 0.931 kPaGauge 以下で 作動すること。	系統除染が完了する まで	
		漏洩検知装置	閉じ込めの機能	漏洩検知装置が 0.735 kPaGauge 以下で 作動すること。		
高放射性固体廃棄 物貯蔵庫(HASWS)	セル等	温度警報装置	火災等による損傷の 防止機能	温度警報装置が 64.4 ℃以下で作動す ること。	系統除染が完了する まで	
第二高放射性固体 廃棄物 貯蔵施設	セル等	漏洩検知装置	閉じ込めの機能	漏洩検知装置が 1.029 kPaGauge 以下で 作動すること。	系統除染が完了する	
発来物質機施設 (2HASWS)	C/V 可	漏洩検知装置	閉じ込めの機能	漏洩検知装置が 0.529 kPaGauge 以下で 作動すること。	まで	
アスファルト固化 体貯蔵施設(AS1)	セル等	温度警報装置	火災等による損傷の 防止機能	温度警報装置が 72.0 ℃以下で作動すること。	系統除染が完了する まで	

表 1-7 性能維持施設 (32/44)

	設備名称等		要求される機能	性能	維持すべき期間
第二アスファルト 固化体貯蔵施設	セル等	温度警報装置	火災等による損傷の 防止機能	温度警報装置が 72.4 ℃以下で作動す ること。	系統除染が完了する
(AS2)	ビル寺	温度警報装置	火災等による損傷の 防止機能	温度警報装置が 72.0 ℃以下で作動すること。	まで
アスファルト固化	セル等	漏洩検知装置	閉じ込めの機能	漏洩検知装置が 0.514 kPaGauge 以下で作動すること。	系統除染が完了する
処理施設(ASP)	ビル寺	漏洩検知装置	閉じ込めの機能	漏洩検知装置が 1.009 kPaGauge 以下で 作動すること。	まで
		温度警報装置	火災等による損傷の 防止機能	温度警報装置が 73.5 ℃以下で作動す ること。	
		漏洩検知装置	閉じ込めの機能	漏洩検知装置が 0.156 kPaGauge 以下で作動すること。	
		漏洩検知装置	閉じ込めの機能	漏洩検知装置が 0.422 kPaGauge 以下で作動すること。	
廃棄物処理場(AAF)	セル等	漏洩検知装置	閉じ込めの機能	漏洩検知装置が 0.284 kPaGauge 以下で作動すること。	系統除染が完了する まで
	漏洩	漏洩検知装置	閉じ込めの機能	漏洩検知装置が 0.242 kPaGauge 以下で作動すること。	
		漏洩検知装置	閉じ込めの機能	漏洩検知装置が 0.530 kPaGauge 以下で 作動すること。	
		漏洩検知装置	閉じ込めの機能	漏洩検知装置が 0.579 kPaGauge 以下で作動すること。	
		漏洩検知装置	閉じ込めの機能	漏洩検知装置が 0.446 kPaGauge 以下で作動すること。	
第二低放射性廃液 蒸発処理施設(E)	セル等	漏洩検知装置	閉じ込めの機能	漏洩検知装置が 0.068 kPaGauge 以下で 作動すること。	系統除染が完了する まで
		漏洩検知装置	閉じ込めの機能	漏洩検知装置が接点短絡で作動すること。	
第三低放射性廃液 蒸発処理施設(Z)	セル等	温度警報装置	火災等による損傷の 防止機能	温度警報装置が 72.2 ℃以下で作動すること。	系統除染が完了する まで

表 1-7 性能維持施設 (33/44)

	設備名称等		要求される機能	性能	維持すべき期間
第三低放射性廃液	セル等	漏洩検知装置	閉じ込めの機能	漏洩検知装置が 0.960 kPaGauge 以下で 作動すること。	系統除染が完了する
蒸発処理施設(Z)	E/V 寺	漏洩検知装置	閉じ込めの機能	漏洩検知装置が 0.558 kPaGauge 以下で 作動すること。	まで
		温度警報装置	火災等による損傷の 防止機能	温度警報装置が 72.2 ℃以下で作動す ること。	
		漏洩検知装置	閉じ込めの機能	漏洩検知装置が 0.362 kPaGauge 以下で 作動すること。	
		漏洩検知装置	閉じ込めの機能	漏洩検知装置が 0.411 kPaGauge 以下で 作動すること。	
廃溶媒貯蔵場(WS)	セル等	漏洩検知装置	閉じ込めの機能	漏洩検知装置が 0.509 kPaGauge 以下で 作動すること。	系統除染が完了する
)	C/V +	漏洩検知装置	閉じ込めの機能	漏洩検知装置が 0.411 kPaGauge 以下で作動すること。	まで
		漏洩検知装置	閉じ込めの機能	漏洩検知装置が 0.430 kPaGauge 以下で作動すること。	
		漏洩検知装置	閉じ込めの機能	漏洩検知装置が 0.442 kPaGauge 以下で 作動すること。	
		漏洩検知装置	閉じ込めの機能	漏洩検知装置が 0.489 kPaGauge 以下で作動すること。	
		温度警報装置	火災等による損傷の 防止機能	温度警報装置が 72.2 ℃以下で作動すること。	
スラッジ貯蔵場 (LW)	セル等	漏洩検知装置	閉じ込めの機能	漏洩検知装置が 1.019 kPaGauge 以下で 作動すること。	系統除染が完了する まで
		漏洩検知装置	閉じ込めの機能	漏洩検知装置が 0.479 kPaGauge 以下で 作動すること。	
放出廃液油分除去	セル等	漏洩検知装置	閉じ込めの機能	漏洩検知装置が 1.519 kPaGauge 以下で作動すること。	系統除染が完了する
施設(C)	12/12	漏洩検知装置	閉じ込めの機能	漏洩検知装置が 0.509 kPaGauge 以下で作動すること。	まで

表 1-7 性能維持施設 (34/44)

	設備名称等		要求される機能	性能	維持すべき期間
低放射性濃縮廃液	セル等	漏洩検知装置	閉じ込めの機能	漏洩検知装置が 0.530 kPaGauge 以下で作動すること。	系統除染が完了する
貯蔵施設(LWSF)	漏洩検知装置	閉じ込めの機能	漏洩検知装置が 0.397 kPaGauge 以下で 作動すること。	まで	
廃溶媒処理技術開	セル等	温度警報装置	火災等による損傷の 防止機能	温度警報装置が 71.7 ℃以下で作動す ること。	系統除染が完了する
発施設(ST)	7//	漏洩検知装置	閉じ込めの機能	漏洩検知装置が 0.627 kPaGauge 以下で 作動すること。	まで
		漏洩検知装置	閉じ込めの機能	漏洩検知装置が 0.328 kPaGauge 以下で作動すること。	
	v v	漏洩検知装置	閉じ込めの機能	漏洩検知装置が 0.345 kPaGauge 以下で作動すること。	
		漏洩検知装置	閉じ込めの機能	漏洩検知装置が 0.382 kPaGauge 以下で作動すること。	
		漏洩検知装置	閉じ込めの機能	漏洩検知装置が 0.299 kPaGauge 以下で 作動すること。	
ガラス固化技術開 発施設(TVF)		漏洩検知装置	閉じ込めの機能	漏洩検知装置が 0.309 kPaGauge 以下で 作動すること。	系統除染が完了する まで
		漏洩検知装置	閉じ込めの機能	漏洩検知装置が 0.373 kPaGauge 以下で 作動すること。	
		漏洩検知装置	閉じ込めの機能	漏洩検知装置が 0.349 kPaGauge 以下で 作動すること。	
		漏洩検知装置	閉じ込めの機能	漏洩検知装置が 0.505 kPaGauge 以下で作動すること。	
		漏洩検知装置	閉じ込めの機能	漏洩検知装置が接点短絡で作動すること。	
プルトニウム転換 技 術 開 発 施 設	セル等	温度警報装置	火災等による損傷の 防止機能	温度警報装置が 74.1 ℃以下で作動すること。	系統除染が完了する
IX M 用 光 旭 設 (PCDF)	10/レザ	漏洩検知装置	閉じ込めの機能	漏洩検知装置が 0.931 kPaGauge 以下で 作動すること。	まで

表 1-7 性能維持施設 (35/44)

設備名	4称等		要求される機能	性能	維持すべき期間
クリプトン回収技術 開発施設 (Kr)	セル等	漏洩検知 装置	閉じ込めの機能	漏洩検知装置が 0.514 kPaGauge 以下で作動すること。	系統除染が完了 するまで
ユーティリティ施設 (UC)	非常用電源	非常用発電機	保安電源設備の 給電機能	・商用電源停電から20秒以内に所定の電圧(6.6 kV±3.5 %)・ 周波数(50 Hz±5%)を確立し、給電状態となること。 ・商用電源復電後、正常に非常用発電機電源から商用電源に 移行すること。	供給先の建家の 管理区域解除ま で
中間開閉所	非常用電源	非常用発電機	保安電源設備の 給電機能	・商用電源停電から20秒以内に所定の電圧(6.6 kV±3.5 %)・ 周波数(50 Hz±5%)を確立し、給電状態となること。 ・商用電源復電後、正常に非常用発電機電源から商用電源に 移行すること。	供給先の建家の 管理区域解除ま で
第二中間開閉所	非常用電源	非常用発電機	保安電源設備の 給電機能	・商用電源停電から20秒以内に所定の電圧(6.6 kV±3.5 %)・ 周波数(50 Hz±5%)を確立し、給電状態となること。 ・商用電源復電後、正常に非常用発電機電源から商用電源に 移行すること。	供給先の建家の 管理区域解除ま で
ガラス固化技術開発 施設(TVF)	非常用電源	非常用発電機	保安電源設備の 給電機能	・商用電源停電から20秒以内に所定の電圧(6.6 kV±3.5 %)・ 周波数(50 Hz±5%)を確立し、給電状態となること。 ・商用電源復電後、正常に非常用発電機電源から商用電源に 移行すること。	ガラス固化技術 開発施設の管理 区域解除まで
分析所(CB)	非常用電源	無停電電源装置	保安電源設備の 給電機能	・停電切換作動試験時の負荷側への給電状態が以下のとおりであること。 電圧 : 100±10 V 周波数:50±1.0 Hz	分析所の管理区 域解除まで
第三低放射性廃液蒸 発処理施設(Z)	非常用電源	無停電電源装置	保安電源設備の 給電機能	・停電切換作動試験時の負荷側への給電状態が以下のとおりであること。 電圧 : 100±10 V 周波数:50±1.0 Hz	第三低放射性廃 液蒸発処理施設 の管理区域解除 まで
廃溶媒処理技術開発 施設(ST)	非常用電源	無停電電源装置	保安電源設備の 給電機能	・停電切換作動試験時の負荷側への給電状態が以下のとおりであること。 電圧 : 100±10 V 周波数: 50±1.0 Hz	廃溶媒処理技術 開発施設の管理 区域解除まで

表 1-7 性能維持施設 (36/44)

設	備名称等		要求される機能	性能	維持すべき期間
ウラン脱硝施設 (DN)	非常用電源	無停電電源装置	保安電源設備の 給電機能	・停電切換作動試験時の負荷側への給電状態が以下のとおりであること。 電圧 : 100±10 V 周波数: 50±1.0 Hz	ウラン脱硝施設 の管理区域解除 まで
焼却施設(IF)	非常用電源	無停電電源装置	保安電源設備の 給電機能	・停電切換作動試験時の負荷側への給電状態が以下のとおりであること。 電圧 : 100±10 V 周波数:50±1.0 Hz	焼却施設の管理 区域解除まで
高放射性廃液貯 蔵場(HAW)	非常用電源	無停電電源装置	保安電源設備の 給電機能	・停電切換作動試験時の負荷側への給電状態が以下のとおりであること。 電圧 : 100±10 V 周波数:50±1.0 Hz	高放射性廃液貯 蔵場の管理区域 解除まで
第二高放射性固体廃棄物貯蔵施設(2HASWS)	非常用電源	無停電電源装置	保安電源設備の 給電機能	・停電切換作動試験時の負荷側への給電状態が以下のとおりであること。 電圧 : 100±10 V 周波数:50±1.0 Hz	第二高放射性固体廃棄物貯蔵施設の管理区域解除まで
ガラス固化技術 開発施設(TVF)	非常用電源	無停電電源装置	保安電源設備の 給電機能	・停電切換作動試験時の負荷側への給電状態が以下のとおりであること。 電圧 : 100±10 V 周波数:50±1.0 Hz	ガラス固化技術 開発施設の管理 区域解除まで
第二アスファル ト固化体貯蔵施 設 (AS2)	非常用電源	無停電電源装置	保安電源設備の 給電機能	・停電切換作動試験時の負荷側への給電状態が以下のとおりであること。 電圧 : 100±10 V 周波数:50±1.0 Hz	第二アスファル ト固化体貯蔵施 設の管理区域解 除まで
プルトニウム転 換技術開発施設 (PCDF)	非常用電源	無停電電源装置	保安電源設備の 給電機能	・停電切換作動試験時の負荷側への給電状態が以下のとおりであること。 電圧 : 100±10 V 周波数:50±1.0 Hz	プルトニウム転換技術開発施設 の管理区域解除 まで
低放射性濃縮廃 液 貯 蔵 施 設 (LWSF)	非常用電源	無停電電源装置	保安電源設備の 給電機能	・停電切換作動試験時の負荷側への給電状態が以下のとおりであること。 電圧 : 100±10 V 周波数:50±1.0 Hz	低放射性濃縮廃 液貯蔵施設の管 理区域解除まで

表 1-7 性能維持施設 (37/44)

	設備名称等		要求される機能	性能	維持すべき期間
クリプトン回収 技術開発施設 (Kr)	非常用電源	無停電電源装置	保安電源設備の給電 機能	・停電切換作動試験時の負荷側への給電 状態が以下のとおりであること。 電圧 : 100±10 V 周波数: 50±1.0 Hz	クリプトン回収 技術開発施設の 管理区域解除ま で
	冷却水設備	圧力下限警報装置	その他(冷却機能)	圧力下限警報装置が272 kPaGauge 以上で 作動すること。	
ユーティリティ	们如你就們	圧力下限警報装置	その他(冷却機能)	圧力下限警報装置が284 kPaGauge 以上で作動すること。	供給先の建家の 管理区域解除ま
施設 (UC)	圧縮空気設備	圧力下限警報装置	火災等による損傷の 防止機能	圧力下限警報装置が 485 kPaGauge 以上 で作動すること。	官垤区域解除まで
	工船至风政佣	圧力下限警報装置	火災等による損傷の 防止機能	圧力下限警報装置が 495 kPaGauge 以上で 作動すること。	
高放射性廃液貯 蔵場(HAW)	圧空貯槽	圧力下限警報装置	計測制御系統施設 (計測機能)	圧力下限警報装置が 671.7 kPaGauge 以上 で作動すること。	高放射性廃液貯 蔵場の管理区域 解除まで
廃溶媒処理技術 開発施設(ST)	槽	温度記録上限緊急 操作装置	火災等による損傷の 防止機能	温度記録上限緊急操作装置が 55.3 ℃以 下で作動すること。	系統除染が完了 するまで
ガラス固化技術 開発施設(TVF)	固化セル	圧力上限緊急操作 装置	安全保護回路	圧力上限緊急操作装置が-0.040 kPaGauge以下で作動すること。	系統除染が完了 するまで
	焙焼還元炉	温度上限緊急操作 装置	安全保護回路	温度上限緊急操作装置が温度制限値 850 ℃以下で作動すること。	
	/	流量下限緊急操作 装置	安全保護回路	流量下限緊急操作装置が 0.7 m³/h 以上で 作動すること。	
プルトニウム転 換技術開発施設	窒素水素混合ガ	水素濃度上限緊急 操作装置	安全保護回路	水素濃度上限緊急操作装置が水素濃度 制限値6%(容積)以下で作動すること。	系統除染が完了 するまで
I (PLIIH) I — :	支系 小系 此 日 カ ス 供給系	水素濃度上限警報 上限操作装置	火災等による損傷の 防止機能	水素濃度上限警報上限操作装置が水素 濃度制限値6%(容積)以下で作動する こと。	, , , o, C
	廃液蒸発缶	温度上限緊急操作 装置	火災等による損傷の 防止機能	温度上限緊急操作装置が 132 ℃以下で 作動すること。	

表 1-7 性能維持施設 (38/44)

	=n./++ + -1. **		(30/ 11)	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		
設備名称等			要求される機能	性能	維持すべき期間	
プルトニウム転 換技術開発施設 (PCDF)	廃液蒸発缶	圧力上限緊急操 作装置	火災等による損傷の 防止機能	圧力上限緊急操作装置が 15.10 kPaGauge 以下で作動すること。	系統除染が完了 するまで	
焼却施設(IF)	焼却灰受槽	温度上限操作装 置	火災等による損傷の 防止機能	温度上限操作装置が 55.5 ℃以下で作動すること。	系統除染が完了 するまで	
分離精製工場 (MP)	その他の主要な 設備	臨界警報装置	核燃料物質の臨界防 止機能	ガンマ線又は中性子線を模擬した入力を与え,検出器3基のうち,2基以上の検知で作動すること。	系統除染が完了 するまで	
プルトニウム転 換技術開発施設 (PCDF)	その他の主要な 設備	臨界警報装置	核燃料物質の臨界防 止機能	ガンマ線又は中性子線を模擬した入力を与え,検出器3基のうち,2基以上の検知で作動すること。	系統除染が完了 するまで	
	溶解槽	温度計	計測制御系統施設 (計測機能)	計器が正常に作動すること。		
		圧力計	計測制御系統施設 (計測機能)	計器が正常に作動すること。		
	溶解槽溶液受槽	密度計	計測制御系統施設 (計測機能)	計器が正常に作動すること。		
	抽出器	流量計	計測制御系統施設 (計測機能)	計器が正常に作動すること。		
分離精製工場	第 1 スクラブ調 整槽	密度計	計測制御系統施設 (計測機能)	計器が正常に作動すること。	系統除染が完了	
(MP)	第 3 スクラブ調 整槽	電導度計	計測制御系統施設 (計測機能)	計器が正常に作動すること。	するまで	
	第2ストリップ 調整槽	電導度計	計測制御系統施設 (計測機能)	計器が正常に作動すること。		
	第 3 ストリップ 調整槽	電導度計	計測制御系統施設 (計測機能)	計器が正常に作動すること。		
	プルトニウム溶	温度計	計測制御系統施設 (計測機能)	計器が正常に作動すること。		
	液蒸発缶	圧力計	計測制御系統施設 (計測機能)	計器が正常に作動すること。		

表 1-7 性能維持施設 (39/44)

	設備名称等		要求される機能	性能	維持すべき期間
	ドレン受槽	液位計	計測制御系統施設 (計測機能)	計器が正常に作動すること。	
分離精製工場		温度計	計測制御系統施設 (計測機能)	計器が正常に作動すること。	■ 系統除染が完了
(MP)	ウラン溶液蒸発 缶(第1段)	圧力計	計測制御系統施設 (計測機能)	計器が正常に作動すること。	するまで
		流量計	計測制御系統施設 (計測機能)	計器が正常に作動すること。	
	脱硝塔	温度計	計測制御系統施設 (計測機能)	計器が正常に作動すること。	
		圧力計	計測制御系統施設 (計測機能)	計器が正常に作動すること。	
	UNH 受槽	密度計	計測制御系統施設 (計測機能)	計器が正常に作動すること。	
ウラン脱硝施設		ウラン濃縮度モ ニタ	計測制御系統施設 (計測機能)	計器が正常に作動すること。	系統除染が完了
(DN)		温度計	計測制御系統施設 (計測機能)	計器が正常に作動すること。	するまで
	溶解槽	圧力計	計測制御系統施設 (計測機能)	計器が正常に作動すること。	
		密度計	計測制御系統施設 (計測機能)	計器が正常に作動すること。	
	溶解液受槽	密度計	計測制御系統施設 (計測機能)	計器が正常に作動すること。	
	酸回収蒸発缶	温度計	計測制御系統施設 (計測機能)	計器が正常に作動すること。	
分離精製工場 (MP)	政四収然光山	圧力計	計測制御系統施設 (計測機能)	計器が正常に作動すること。	系統除染が完了 するまで
	高放射性廃液中 間貯槽	液位計	計測制御系統施設 (計測機能)	計器が正常に作動すること。	

表 1-7 性能維持施設 (40/44)

	11. 供夕		田北される機能	性能	維持ナッキ期間
	設備名称等	T	要求される機能	1生形	維持すべき期間
		温度計	計測制御系統施設 (計測機能)	計器が正常に作動すること。	
		圧力計	計測制御系統施設 (計測機能)	計器が正常に作動すること。	
	高放射性廃液蒸	液位計	計測制御系統施設 (計測機能)	計器が正常に作動すること。	
分離精製工場 (MP)	発缶	密度計	計測制御系統施設 (計測機能)	計器が正常に作動すること。	系統除染が完了するまで
		電導度計	計測制御系統施設 (計測機能)	計器が正常に作動すること。	
		γ線計	計測制御系統施設 (計測機能)	計器が正常に作動すること。	
	高放射性廃液貯 槽	温度計	計測制御系統施設 (計測機能)	計器が正常に作動すること。	
高放射性廃液貯	高放射性廃液貯 槽	温度計	計測制御系統施設 (計測機能)	計器が正常に作動すること。	系統除染が完了するまで
蔵場(HAW)		圧力計	計測制御系統施設 (計測機能)	計器が正常に作動すること。	- 示心体朱が九」りるよく
分離精製工場	高放射性廃液貯 槽	圧力計	計測制御系統施設 (計測機能)	計器が正常に作動すること。	系統除染が完了するまで
(MP)	廃ガス貯槽	圧力計	計測制御系統施設 (計測機能)	計器が正常に作動すること。	示机体朱州元丁りるよく
海中放出設備		流量計	計測制御系統施設 (計測機能)	計器が正常に作動すること。	全ての建家の管理区域解除まで
主排気筒		流量計	計測制御系統施設 (計測機能)	計器が正常に作動すること。	排気元の建家の管理区域解除 まで
分析所 (CB)	建家及びセル換 気系	圧力計	計測制御系統施設 (計測機能)	計器が正常に作動すること。	分析所の管理区域解除まで
分離精製工場 (MP)	建家及びセル換 気系	圧力計	計測制御系統施設 (計測機能)	計器が正常に作動すること。	分離精製工場の管理区域解除まで

表 1-7 性能維持施設 (41/44)

				(11) 11)	
	設備名称等		要求される機能	性能	維持すべき期間
高放射性固体廃棄物 貯蔵庫(HASWS)	セル換気系	圧力計	計測制御系統施設 (計測機能)	計器が正常に作動すること。	高放射性固体廃棄物貯蔵庫 の管理区域解除まで
廃棄物処理場 (AAF)	建家及びセル換気系	圧力計	計測制御系統施設 (計測機能)	計器が正常に作動すること。	廃棄物処理場の管理区域解 除まで
スラッジ貯蔵場 (LW)	建家及びセル換気系	圧力計	計測制御系統施設 (計測機能)	計器が正常に作動すること。	スラッジ貯蔵場の管理区域 解除まで
第二低放射性廃液蒸 発処理施設(E)	建家及びセル換気系	圧力計	計測制御系統施設 (計測機能)	計器が正常に作動すること。	第二低放射性廃液蒸発処理 施設の管理区域解除まで
第三低放射性廃液蒸 発処理施設(Z)	建家及びセル換気系	圧力計	計測制御系統施設 (計測機能)	計器が正常に作動すること。	第三低放射性廃液蒸発処理 施設の管理区域解除まで
第二スラッジ貯蔵場 (LW2)	建家及びセル換気系	圧力計	計測制御系統施設 (計測機能)	計器が正常に作動すること。	第二スラッジ貯蔵場の管理 区域解除まで
廃溶媒貯蔵場 (WS)	建家及びセル換気系	圧力計	計測制御系統施設 (計測機能)	計器が正常に作動すること。	廃溶媒貯蔵場の管理区域解 除まで
放出廃液油分除去施 設(C)	建家換気系	圧力計	計測制御系統施設 (計測機能)	計器が正常に作動すること。	放出廃液油分除去施設の管 理区域解除まで
低放射性濃縮廃液貯 蔵施設(LWSF)	建家及びセル換気系	圧力計	計測制御系統施設 (計測機能)	計器が正常に作動すること。	低放射性濃縮廃液貯蔵施設 の管理区域解除まで
ウラン脱硝施設(DN)	建家換気系	圧力計	計測制御系統施設 (計測機能)	計器が正常に作動すること。	ウラン脱硝施設の管理区域 解除まで
高放射性廃液貯蔵場 (HAW)	建家及びセル換気系	圧力計	計測制御系統施設 (計測機能)	計器が正常に作動すること。	高放射性廃液貯蔵場の管理 区域解除まで
焼却施設(IF)	建家換気系	圧力計	計測制御系統施設 (計測機能)	計器が正常に作動すること。	焼却施設の管理区域解除ま で
アスファルト固化体 貯蔵施設(AS1)	建家及びセル換気系	圧力計	計測制御系統施設 (計測機能)	計器が正常に作動すること。	アスファルト固化体貯蔵施 設の管理区域解除まで
第二アスファルト固 化体貯蔵施設(AS2)	建家及びセル換気系	圧力計	計測制御系統施設 (計測機能)	計器が正常に作動すること。	第二アスファルト固化体貯 蔵施設の管理区域解除まで
第二高放射性固体廃棄物 貯 蔵 施 設 (2HASWS)	建家及びセル換気系	圧力計	計測制御系統施設 (計測機能)	計器が正常に作動すること。	第二高放射性固体廃棄物貯 蔵施設の管理区域解除まで

表 1-7 性能維持施設 (42/44)

	設備名称等		要求される機能	性能	維持すべき期間
アスファルト固化処 理施設 (ASP)	建家及びセル換気系	圧力計	計測制御系統施設(計測機能)	計器が正常に作動すること。	アスファルト 固化処理施設 の管理区域解除まで
廃溶媒処理技術開発 施設(ST)	建家及びセル換気系	圧力計	計測制御系統施設 (計測機能)	計器が正常に作動すること。	廃溶媒処理技術開発施設の 管理区域解除まで
ガラス固化技術開発 施設(TVF)	建家及びセル換気系	圧力計	計測制御系統施設 (計測機能)	計器が正常に作動すること。	ガラス固化技術開発施設の 管理区域解除まで
プルトニウム転換技 術開発施設 (PCDF)	建家及びセル換気系	圧力計	計測制御系統施設 (計測機能)	計器が正常に作動すること。	プルトニウム転換技術開発 施設の管理区域解除まで
クリプトン回収技術 開発施設(Kr)	建家及びセル換気系	圧力計	計測制御系統施設 (計測機能)	計器が正常に作動すること。	クリプトン回収技術開発施 設の管理区域解除まで
		流量計	計測制御系統施設 (計測機能)	計器が正常に作動すること。	
分離精製工場 (MP)	溶解施設給液槽	液位計	計測制御系統施設 (計測機能)	計器が正常に作動すること。	系統除染が完了するまで
		密度計	計測制御系統施設 (計測機能)	計器が正常に作動すること。	
	 焙焼還元炉	温度計	計測制御系統施設 (計測機能)	計器が正常に作動すること。	
プルトニウム転換技 術開発施設 (PCDF)	A口が12をプロが1	流量計	計測制御系統施設 (計測機能)	計器が正常に作動すること。	系統除染が完了するまで
	室素水素混合ガス供 給系	水素濃 度計	計測制御系統施設 (計測機能)	計器が正常に作動すること。	
第一付属排気筒		流量計	計測制御系統施設 (計測機能)	計器が正常に作動すること。	排気元の建家の管理区域解 除まで
第二付属排気筒		流量計	計測制御系統施設 (計測機能)	計器が正常に作動すること。	排気元の建家の管理区域解 除まで
高放射性固体廃棄物 貯蔵庫(HASWS)	セル	温度計	計測制御系統施設 (計測機能)	計器が正常に作動すること。	高放射性固体廃棄物貯蔵庫 の管理区域解除まで
第二高放射性固体廃棄物 貯 蔵 施 設 (2HASWS)	セル	温度計	計測制御系統施設 (計測機能)	計器が正常に作動すること。	第二高放射性固体廃棄物貯 蔵施設の管理区域解除まで

表 1-7 性能維持施設 (43/44)

	設備名称等		要求される機能	性能	維持すべき期間
廃棄物処理場(AAF)	低放射性廃液第1蒸 発缶	圧力計	計測制御系統施設 (計測機能)	計器が正常に作動すること。	系統除染が完了するまで
第二低放射性廃液蒸 発処理施設(E)	低放射性廃液第2蒸 発缶	圧力計	計測制御系統施設 (計測機能)	計器が正常に作動すること。	系統除染が完了するまで
	焼却灰受槽	温度計	計測制御系統施設 (計測機能)	計器が正常に作動すること。	
焼却施設(IF)	焼却灰貯槽	温度計	計測制御系統施設 (計測機能)	計器が正常に作動すること。	系統除染が完了するまで
	焼却炉	温度計	計測制御系統施設 (計測機能)	計器が正常に作動すること。	
廃溶媒処理技術開発 施設(ST)	槽	温度計	計測制御系統施設 (計測機能)	計器が正常に作動すること。	系統除染が完了するまで

表 1-7 性能維持施設 (44/44)

	設備名称等		要求される機能	性能	維持すべき期間
	燃料カスククレーン		• 搬送設備(搬送機能)		
	燃料取出しプーバン	レクレー	•搬送設備(搬送機能)	・定格荷重を吊って、吊り上げ、走行、 横行動作を行い、異音、作動上の不具 合のないこと。	
	燃料貯蔵プールク	フレーン	•搬送設備(搬送機能)	・巻過防止装置,ブレーキ装置,制御装置が正常に作動すること。	使用済燃料の搬出 が完了するまで
分離精製工場 (MP)	燃料移動プールクレーン		•搬送設備(搬送機能)	・ワイヤー, フック等に変形, ねじれ, - 亀裂のないこと。	
	セル内クレーン		•搬送設備(搬送機能)		
	廃ガス貯槽		・閉じ込めの機能	・850 kPaGauge 以上の圧力で発泡液を塗布し、漏れによる発泡がないこと。・安全弁の吹き出し圧力が 980 kPaGauge 以下であること。	系統除染が完了するまで
海中放出設備		・廃棄施設(放出口からの廃棄 機能)	放出配管系を 0.45 MPaGauge 以上に加圧 し,圧力降下がないこと。	全ての建家の管理 区域解除まで	
分離精製工場 (MP)	加熱蒸気供給系	安全弁	・火災等による損傷の防止機能	安全弁が吹き出し圧力 0.249 MPaGauge 以下で作動すること。	系統除染が完了す るまで
高放射性廃液 貯蔵場(HAW)	空気圧縮機		•計測制御系統施設(計測機能)	空気圧縮機が故障時に予備機へ自動で 切り替わること。	高放射性廃液貯蔵 場の管理区域解除 まで
ユーティリテ	空気圧縮機		・火災等による損傷の防止機能・計測制御系統施設(計測機能)	空気圧縮機が故障時に予備機へ自動で 切り替わること。	供給先の建家の管 理区域解除まで
ィ施設(UC)	冷却水供給ポンプ		・その他(冷却機能)	ポンプが故障時に予備機へ自動で切り替 わること。	系統除染が完了す るまで

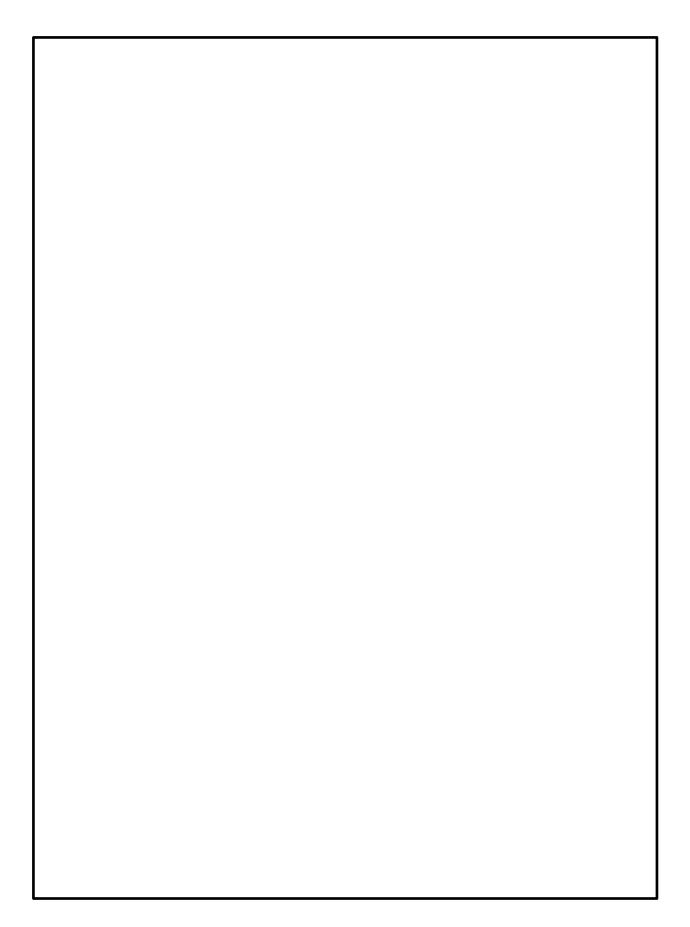


図 1-1 再処理施設の敷地及び廃止措置対象施設の配置

高放射性固体廃棄物の取出しが完了するまでの安全対策

高放射性固体廃棄物貯蔵庫(HASWS)における高放射性固体廃棄物の取出しが 完了するまでの間,以下の安全対策を実施する。

1.1 湿式セルライニングの健全性確認

これまで腐食電位の測定により当該セルライニングが腐食を生じにくい環境であることを確認している。セルライニングの外観観察及びプール水の分析を継続実施することによりライニングの健全性を定期的に確認し維持する。

1.2 プール水の漏えい対策

プール水が大量漏えいした場合に備えて、漏えい水を循環させる仮設の 戻りライン及びポンプを配備した。また、停電時においても漏えい水の移 送が行えるよう電源の確保対策を実施する。さらに、管理区域境界シャッ ター下部からの流出を防ぐための堰を準備する。

1.3 プール水の浄化

既往の許認可を受けた移送設備を用いたプール水の移送・給水による希 釈法及び吸着剤を用いた吸着法について多角的な観点から適用性を評価す るなど、プール水の浄化に向けた検討を行う。

1.4 乾式セルでの火災発生時の対策

これまで乾式セルに貯蔵している分析廃棄物の主な材料であるポリエチレンについて、試薬(硝酸、ドデカン)の接触を考慮した自然発火性を評価しており、自然発火の可能性がないことを確認している。その上で万一の火災に備えて、予備貯蔵庫においてはセル内散水装置を製作した。モックアップの結果を踏まえた上で配備する。汚染機器類貯蔵庫には、新たに排気ダクトに温度計を設置し常時監視する他、セル入気配管から消火作業を可能とする治具を準備する。

以上

低放射性濃縮廃液及び廃溶媒に係るリスク評価

低放射性廃棄物処理技術開発施設(LWTF)の改造及び整備により,再処理に伴い発生した低放射性濃縮廃液の固化・安定化を行い,低放射性濃縮廃液に係るリスク低減を図る。また,廃溶媒についても,低放射性廃棄物処理技術開発施設(LWTF)の運転開始に合わせて,速やかに廃溶媒の固化・安定化に着手し,廃溶媒に係るリスク低減を図る。

低放射性廃棄物処理技術開発施設(LWTF)の改造及び整備が完了するまで,低放射性濃縮廃液の貯蔵に係る設備の健全性確認を定期的に行うなど,現状の安全管理を継続することにより安全を確保し,万一,低放射性濃縮廃液が漏えいした場合には,スチームジェット及びポンプにより所定の廃液貯槽へ漏えい液を移送し回収する。また,地震時の影響等により既往の許認可を受けた移送設備が使用できない場合の代替措置について検討を行う。

以上

再処理施設の廃止措置に係る安全対策の進め方について

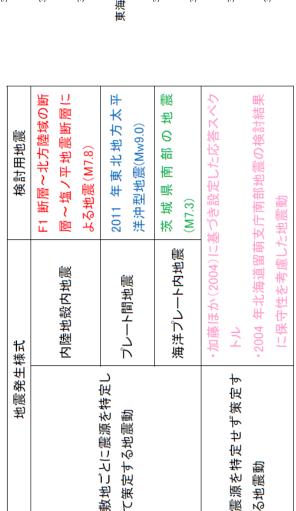
廃止措置段階にある再処理施設においては、リスクが特定の施設に集中しており、 高放射性廃液に伴うリスクが集中する高放射性廃液貯蔵場(HAW)と、これに付随し て廃止措置全体の長期間ではないものの分離精製工場(MP)等の工程洗浄や系統 除染に伴う廃液処理も含めて一定期間使用するガラス固化技術開発施設(TVF)ガラ ス固化技術開発棟については、最優先で安全対策を進める必要がある。

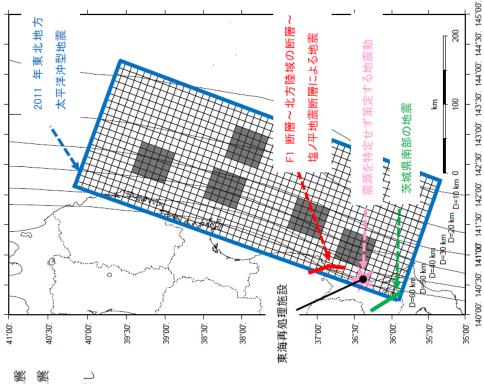
このため、想定される津波及び地震から両施設を守ることが重要であり、設計津波及び設計地震動を想定し、両施設の健全性評価を速やかに実施するとともに必要な安全対策を実施することが最優先の課題となる(優先度 I)。

また, 両施設に関連する施設として, 両施設の重要な安全機能(閉じ込め機能, 崩壊熱除去機能)を維持するために必要な電力やユーティリティ(冷却に使用する水や動力源として用いる蒸気)の供給についても上記に準じて優先度が高い。しかしながら, これらを担う既設の恒設設備(外部電源及び非常用発電機, 蒸気及び工業用水の供給施設)については, 一般施設として建設されたものや, 建設当時の設計で耐震重要施設とはなっていない(既認可上でB類, C類)ことから, 設計津波や設計地震動から守ることが困難である。このため, 事故対処設備(電源車, 可搬ポンプ等)を用いて必要な安全機能の維持を図ることとし, それらの有効性の確保に必要な対策(保管場所及びアクセスルートの信頼性確保, 人員の確保等)を実施する(優先度Ⅱ)。

さらに、津波や地震と比較し施設への影響は小さいと想定されるものの、竜巻、火山などの外部事象に対しても両施設の重要な安全機能を守るために必要な対策を実施する(優先度III)。

高放射性廃液貯蔵場(HAW),ガラス固化技術開発施設(TVF)ガラス固化技術開発棟及びそれらに関連する施設以外の施設については,津波,地震,その他外部事象等に対してリスクに応じた安全対策を実施することとし,順次,対策を進める(優先度IV)。


以上

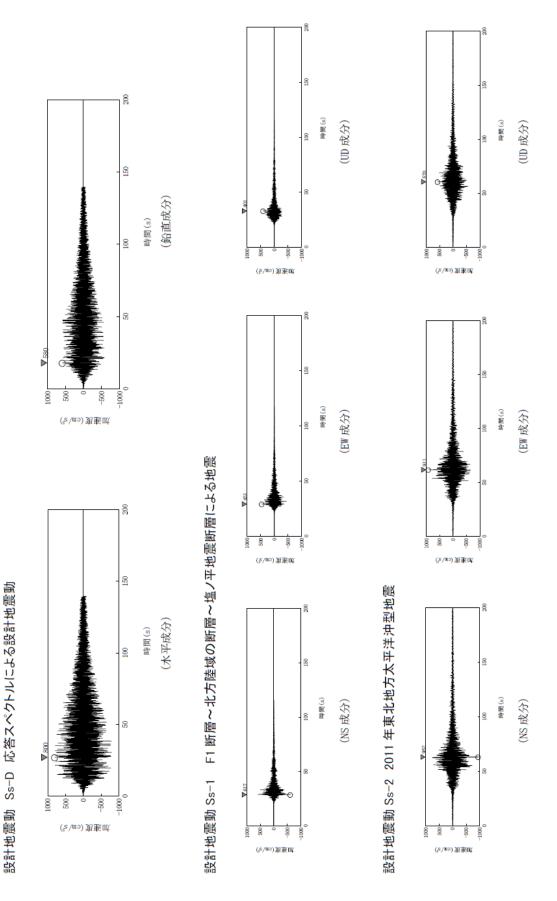

別紙 4(1/3)

① 検討用地震動

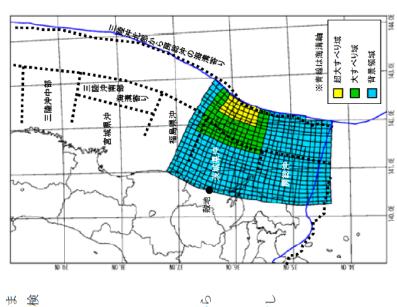
設計地震動評価

- ・ 敷地ごとに震源を特定して策定する地震動については、活断層調査結果や地震発生状況等を考慮し、内陸地殻内地震、プレート間地震、海洋プレート内地震ごとに検討用地震動を選定した。
- 震源を特定せず策定する地震動については、加藤ほか(2004)に基づき設定した応答スペクトル及び2004年北海道留萌支庁南部地震を検討した。

検討用地震の震源位置


別紙 4(2/3)

設計地震動 Ss-D 設計地震動 Ss-1 設計地震動 Ss-2 設計地震動 Ss (UD 成分) 設計地震動 Ss (EW 成分) 設計地震動 Ss (NS 成分)


$\xi(cm/s^2)$	up 成分	280	401	570
最大加速度(cm/s²)	EW 成分	800	451	911
	NS 成分)8	617	952
AN AP 우두 무슨은	12 12 12 13 13 14 15 15 15 15 15 15 15	Ss-D 応答スペクトルによる設計地震動	F1 断層~北方陸域の断層~塩/平地震断層による地震(短周期の不確か、破壊開始点3)	2011 年東北地方太平洋沖型地震(SMGA 位置と短周期レベルの不確かさの重畳)
		Ss-D	Ss-1	Ss-2

② 設計地震動 Ss

別紙 4(3/3)

③ 設計地震動の時刻歴波形

津波評価

設計津波の策定に当たり,

1. 敷地に最も影響を及ぼす波源

え、地震学的見地から想定することが適切な波源を選定する。津波発生要因としては以下の要因を検 選定する敷地に最も影響を及ぼす波源については, 最新の知見を踏ま

- ·2011 年東北地方太平洋沖型地震津波
- ・茨城県沖から房総沖に想定する津波
- ・海洋プレート内地震
- ・海域の活断層による地殻内地震
- ・陸上及び海底での地すべり並びに斜面崩壊
- ・ 火山現象

茨城県沖から 波源の検討にあたっては, 近隣の原子力科学研究所(JRR-3)での津波評価を参照し, 房総沖に想定する津波を波源として選定した。

[津波波源]

茨城県沖から房総沖に想定する津波波源について,以下の保守性を考慮し,Mw8.7 の波源を設定し

・津波波源の南限を房総沖まで拡張

た。また,破壊開始点の不確かさ等の影響を考慮した。

- ・超大すべり城を設定
- ・大すべり城及び超大すべり城のすべり量を割り増し

設計津波

5

- 設計津波策定位置:敷地の沖合約 19 km の水深 100 m の位置
- 津波高さ:T.P.+7.9 m (再処理施設は海から取水しないため,水位上昇側の評価のみ実施)

基準竜巻・設計竜巻の設定

・再処理施設の基準竜巻・設計竜巻の設定は「原子力発電所の竜巻影響評価ガイド」に従い、以下のフローに沿って実施し、設計竜巻は 100 m/s ≥ した。

=====================================	竜巻検討地域は竜巻の単位面 福島県〜沖縄県の沿岸 を設定)域は竜巻()縄県の沿	の単位面積当 学 を設定	当たりの発生数	竜巻検討地域は竜巻の単位面積当たりの発生数が最も多い領域を設定し、 福島県~沖縄県の沿岸 を設定	镇域を設定し
・総観場の気象条件に竜巻検討地域を設定	= = = = = = = = = = = = = = = = = = =	寸地域	面積 (km2)	発生数※1	単位面積当たりの発生数 (個/年/km²)	:9の発生数 km²)
\$	福島県~沖縄県	沖縄県	約57,700	361	1.13×10 ⁻⁴	10-4
基進音巻の最大周速 (V.) 設定	※1気象庁「竜	巻等の突風デー	9ペース」から1961	※1気象庁「竜巻等の突風データベース」から1961年1月~2016年3月の期間で集計	月の期間で集計	
à 💆	基準電券:	過去最大	竜巻による最	基準竜巻:過去最大竜巻による最大風速 92 m/s	s/m	
ザード曲線による最大風速 (V _{B2})を比較 	過去最近	過去最大竜巻による最大風速 V _{B1} (m/s)	最大風速)	/\f_	ハザード曲線による最大風速 V _{B2} (m/s)	人風速
\		92			76	
設計 竜巻の最大風速 (Vp) 設定・サイト特性等を考慮して必要に応じてVB1に割増等を行い、最大風速を設定			世形ため、地 地形ため、地 が少なく、不 速は、基準	再処理施設は平坦な地形ため、地形効果の影響は考慮す 竜巻に関するデータ数が少なく、不確実性があることを考慮 设計竜巻の最大風速は、基準竜巻の最大風速(・再処理施設は平坦な地形ため、地形効果の影響は考慮する必要ない・ ・竜巻に関するデータ数が少なく、不確実性があることを考慮 設計竜巻の最大風速は、基準竜巻の最大風速 (92 m/s)	必要なし m/s)を
☆	安全側は	切り上げ、	安全側に切り上げ、 <u>100 m/s</u> とする	5 ₹₹		
設計竜巻の特性値の設定 ・竜巻影響評価ガイドの記載等に従い、気圧低	設計竜巻 最大風速 (m/s)	移動速度 (m/s)	最大接線 風速 (m/s)	最大接線 風速半径 (m)	最大気圧 低下量 (hPa)	最大気圧 低下率 (hPa/s)
下量等の特性値を設定	100	15	85	30	88	45

別紙 6(2/2)

竜巻対策の概要

/ > 設計竜巻の風圧や設計飛来物の衝撃に対し、3次元解析評価※の結果 等から、建家外壁の強度が確保できることから、健全性が維持できること

(竜巻影響評価ガイド記載値)

章巻条件

100m/s

想定竜巻

鋼製材

想定する 竜巻飛来物

- > 万一、竜巻の影響により重要機器が損傷した場合に備え、有効性を確認 した上で事故対処設備(移動式発電機,エンジン付きポンプ等)により当 該設備の機能を代替する

※衝突解析コードAUTODYNICよる評価であり、衝撃や爆発、高圧現象のような短時間に過大な荷重が作用する材料の挙動を解析することが可能。なお、本解析コードは原子力施設への航空機衝突に対する安全研究や水素爆発に対する安全研究などに広く用いられており、原子力発電所の重大車が対策(水蒸気爆発対策)の有効性確認の報本で使用されている。

鉛直:34m/s

飛来物速度

水平:51m/s (時速約180km)

・ガラリの防護例 大事故対策(水蒸気爆発対策)の有効性確認の審査で使用されている。 級 扉の防護例 ひび割れが発 通や裏面剥離 は発生しない 生するが、貫 建家外壁 # 衝突後に反跳 ҈ ・緑色:健全な箇所・赤色:ひび割れ箇所 竜巻飛来物(鋼製材) 凡例 (時速約120km) 鍋製材 重量:135kg 200mm

図1高放射性廃液貯蔵場(HAW)の建家外壁に対する 3次元解析結果

図2 窓・扉等の開口部の防護 (高放射性廃液貯蔵場(HAW)への実施 イメージ)

再処理施設の火山影響評価は「原子力発電所の火山影響評価ガイド」に基づき評価を実施した。

再処理施設に影響を及ぼし得る事象として降下火砕物による影響が想定された。 ・文献調査や降下火砕物シミュレーションを実施した結果、

火山影響評価

く再処理施設に影響を及ぼし得る火山の抽出>

- その影響範囲、将来の活動可能性の検討を行い、再処理施設に影響を及ぼし得る火山として、13火山を抽出した。 敷地を中心とする半径160 kmの範囲の第四紀*火山(32火山存在)について、火山の活動履歴、噴火規模及び
- *「第四紀」とは地質年代の1つで、258 万年前から現在までの期間のことを言う (「原子力発電所の火山影響評価ガイド」より)

〈抽出された火山の火山活動に関する個別評価〉

抽出された火山の敷地からの離隔及び敷地周辺における火山活動の特徴の検討結果から、対応不可能な火山事 象(火砕物密度流,溶岩流、岩屑なだれ他,新しい火口の開口及び地殻変動)が再処理施設に影響を及ぼす可 能性は十分に小さく、モニタリングの対象となる火山はない。

<再処理施設に影響を及ぼし得る火山事象の抽出>

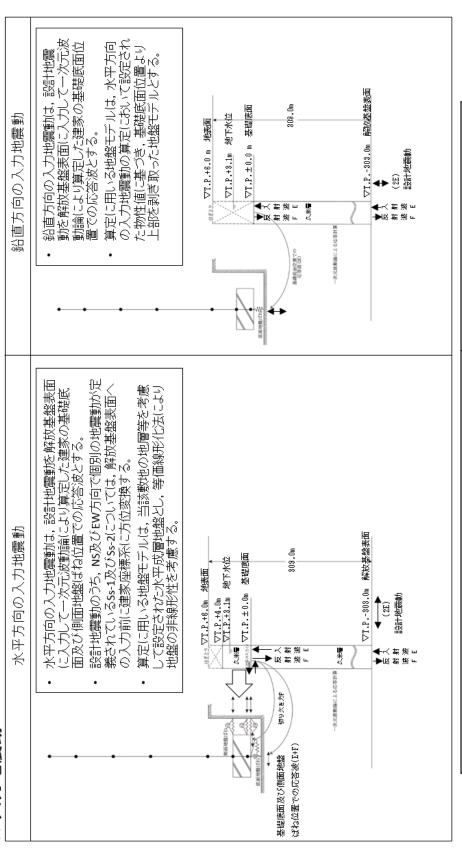
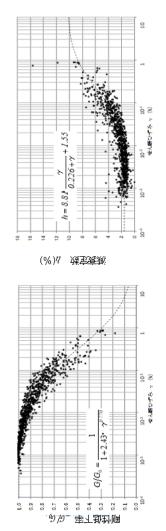

下のとおり設定した。なお、火山性土石流、火山から発生する飛来物(噴石)、火山ガス及びその他の火山事象につい 再処理施設に影響を及ぼし得る火山事象として、降下火砕物による影響が想定され、影響評価に用いる条件を以 ては、再処理施設への影響を及ぼす事象はない。

表. 再処理施設で想定される降下火砕物の影響の想定値

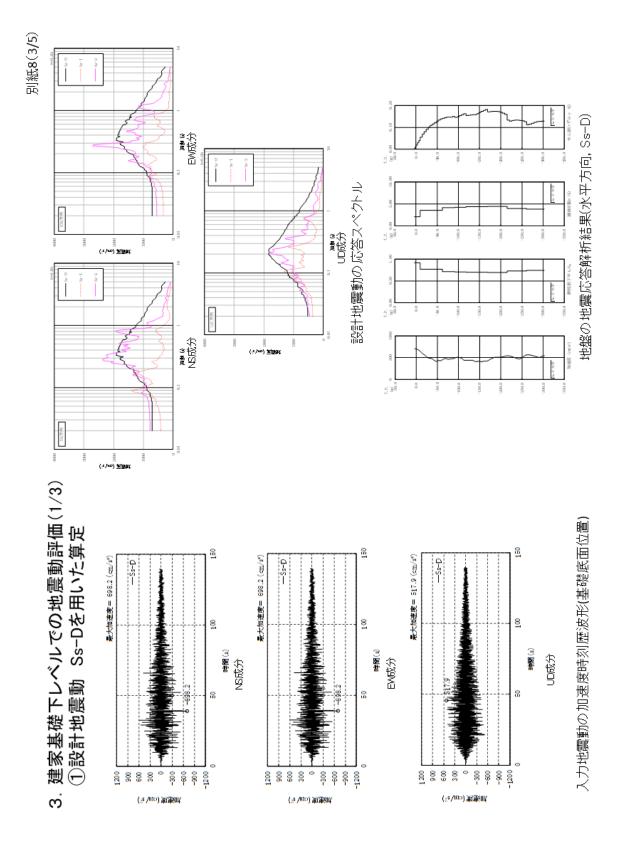
設定値	50 cm	8 mm以下	乾燥状態:0.3 g/cm³ 湿潤状態:1.5 g/cm³
道目		粒径	阅

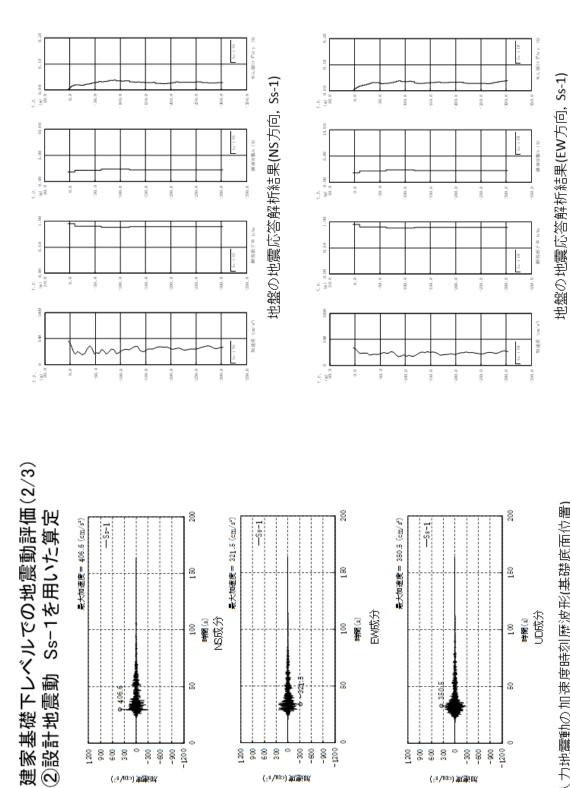
高放射性廃液貯蔵場(HAW)建家の入力地震動について

1. 入力地震動



<th of="" pro<="" properties="" rowspan="2" saperation="" th="" the=""><th></th><th>- アラエナル(事事を)</th><th>車</th><th>最大加速度(カル)</th><th></th></th>	<th></th> <th>- アラエナル(事事を)</th> <th>車</th> <th>最大加速度(カル)</th> <th></th>		- アラエナル(事事を)	車	最大加速度(カル)	
応答スペクトルによる基準地震動800F1断層〜北方陸域の断層〜塩/平地震断層による地震6174512011年東北地方太平洋沖型地震952911			記2日「 出震 里」	松	I ≪ I	UD成分
F1断層〜北方陸域の断層〜塩/平地震断層による地震 617 451 45	Ss-D	ペクトルによる基準地	80	0	580	
2011年東北地方太平洋沖型地震	Ss-1	断層〜北方陸域の断層〜塩/平地震断層による	617	451	401	
	Ss-2	1年東北地方太平洋沖型	952	911	570	


【参考】先行申請している原電東海第二発電所及び原子力科学研究所 JRR-3の基準地震動のうち最大値はそれぞれ1009ガル、952ガル


建家基礎下レベルでの地震物性及び動せん断弾性係数及び減衰定数のひずみ依存性 αi

建家基礎下レベル (地震動評価位置) 解放基盤表面 (基準地震動) 動せん断 輝性係数 Go(MN/m²) 426 426 515 549 969 426 466 655 711 764 867 考 ポンソン 0.440 0.436 0.455 0.455 0.455 0.447 0.444 0.426 0.417 0.431 0.451 地震動算定用地盤モデル 湿潤密度 $\rho_{\rm t} \\ ({\rm g/cm}^3)$ 1.77 1.77 1.77 1.77 1.77 1.77 1.77 1.77 1.771.771.77 Km1* Km1* 型 免 足 Km2 Km3 Km4 Km5 Km6 Km7 Km8 Km1 解放基盤 ▽解放基盤表面 久米層 層名 五 0.0 -169.0 -215.0 -10.0_{-} -62.0_ -92.0_ -261.0_ -118.0 4.0 -303.0標高 T.P. (m)

動せん断弾性係数及び減衰定数のひずみ依存性

最大加速度= 321.5 (cm/s²)

最大加速度= 406.6 (cm/s²)

-Ss-1

1200 900 600 300

က

(54\m2) **実態**成

-300 -600 -900

最大街速度= 350.5 (cm/ ぎ)

EW成分

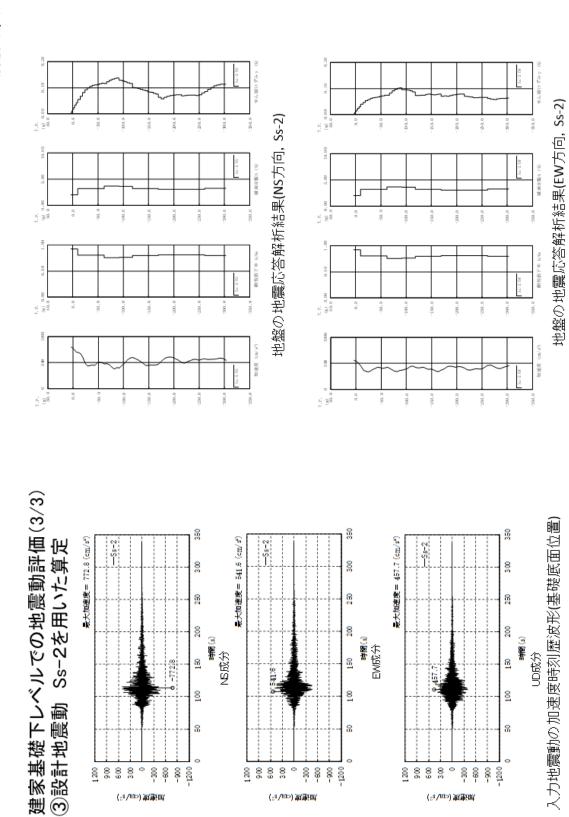
8

-300 -600 -900

入力地震動の加速度時刻歴波形(基礎底面位置)

の数分

120


-300 -600 -900

1200 900 900 300

(54\m5) 复<u></u>基成

900

(%\mɔ) 氢<u>速</u>吨

1200 900 300

-300 -1200

(%\mo) 氢聚碱

1200 900 300

-900

-300

(%\mo) 奥數成

-900

-300

(%\mo) **室**數成

900 900 300

რ

放射性廃棄物の発生量及び廃棄の方法(概要)

1. 放射性廃棄物の発生量

再処理施設に貯蔵している放射性液体廃棄物及び放射性固体廃棄物について, 貯蔵場所ごとの種類と貯蔵量を表 2-1 及び表 2-2 に示す。また, 解体の対象となる施設から発生する低レベル放射性廃棄物(固体及び液体)の推定発生量を表 2-3 に示す。

2. 放射性廃棄物の種類と処理・処分の考え方

放射性廃棄物は、放射性気体廃棄物、放射性液体廃棄物及び放射性固体廃棄物に分類される。放射性廃棄物の発生量を合理的に可能な限り低減するように、適切な除染方法、機器解体工法及び機器解体手順を策定するとともに、適切な処理を行う。当面は、これまでの放射性廃棄物の処理と同じ処理を継続することとし、系統除染等に伴い異なる処理を行う場合には、逐次廃止措置計画の変更申請を行う。各施設間の主要な放射性廃棄物の流れを図 2-1 に示す。

2.1 放射性気体廃棄物

放射性気体廃棄物は、洗浄塔、フィルタ等で洗浄、ろ過した後、主排気筒、第一付属排気筒及び第二付属排気筒を通じて大気に放出する。クリプトン貯蔵シリンダのクリプトンは、窒素により希釈し、プロセス排気として主排気筒を通じて大気に放出する。また、クリプトン貯蔵シリンダ及び配管に残存するクリプトンは窒素を供給することにより、押し出し、プロセス排気として主排気筒を通じて大気に放出する。

放出に当たっては、排気筒において放射性物質濃度を測定監視し、再処理施設保安規定の値を超えないように管理する。放射性気体廃棄物の処理及び管理に係る必要な措置については、再処理施設保安規定の「放射性気体廃棄物の管理」に定め、その管理の中で計画、実施、評価及び改善を行う。なお、廃止措置の進捗に応じて、適宜、放射性気体廃棄物の処理及び管理について、再処理施設保安規定を見直す。

2.2 放射性液体廃棄物

放射性液体廃棄物のうち,高放射性廃液は,高放射性廃液蒸発缶により蒸発濃縮し,必要に応じて組成調整や濃縮を行ったのち,溶融炉へ送り,ガラス原料とともに溶融し,ガラス固化体容器に注入し固化する。

中放射性廃液は,酸回収蒸発缶又は中放射性廃液蒸発缶に供給し蒸発濃縮する。濃縮液は高放射性廃液として溶融炉へ送り,ガラス固化する。凝縮液は、低放射性廃液として処理する。

低放射性廃液は,放射能レベルの区分や性状に応じて蒸発処理,中和処理 及び油分除去を行い,海中放出設備の放出管を通じて海中に放出する。放出 に当たっては、放射性液体廃棄物の放出量が再処理施設保安規定の値を超えないように管理する。一方、蒸発処理に伴い蒸発濃縮した低放射性濃縮廃液については、今後整備する低放射性廃棄物処理技術開発施設(LWTF)でセメント固化し放射性廃棄物の貯蔵施設に貯蔵する。セメント固化体は、必要に応じて処分場の要件に見合うよう廃棄体化処理した後、処分場の操業開始後随時搬出する。廃溶媒については、TBPとドデカンに分離し、TBPについては、エポキシ樹脂等を加えプラスチック固化体にし、放射性廃棄物の貯蔵施設に貯蔵する。ドデカンは主に焼却処理する。放射性液体廃棄物の処理及び管理に係る必要な措置については、再処理施設保安規定の「放射性液体廃棄物等の管理」に定め、その管理の中で計画、実施、評価及び改善を行う。なお、廃止措置の進捗に応じて、適宜、放射性液体廃棄物の処理及び管理について、再処理施設保安規定を見直す。

2.3 放射性固体廃棄物

放射性固体廃棄物のうち可燃性廃棄物及び難燃性廃棄物は、焼却した後放射性廃棄物の貯蔵施設に貯蔵する。不燃性廃棄物は、放射能レベルの区分や性状に応じて放射性廃棄物の貯蔵施設に貯蔵する。処理や運搬スケジュール、貯蔵先の都合等により施設内での貯蔵が必要な場合は、機器解体後のスペースを放射性固体廃棄物の保管場所として活用する。これらの廃棄物は、廃棄体化施設の整備が整い次第廃棄体化施設に搬出し、処分場の要件に見合うよう廃棄体化処理する。廃棄体(ガラス固化体及びセメント固化体を含む)は処分場の操業開始後随時搬出する。放射性廃棄物でない廃棄物(管理区域外から発生した廃棄物を含む。)は、可能な限り再生利用するか、又は産業廃棄物として適切に廃棄する。放射性固体廃棄物の処理及び管理に係る必要な措置については、再処理施設保安規定の「放射性固体廃棄物の管理」に定め、その管理の中で計画、実施、評価及び改善を行う。なお、廃止措置の進捗に応じて、適宜、放射性固体廃棄物の処理及び管理について、再処理施設保安規定を見直す。

3. 既存施設における処理と貯蔵

3.1 高レベル放射性廃棄物

分離施設の分離第1抽出器からの水相,溶媒回収系の第1溶媒洗浄器からの高放射性の溶媒洗浄廃液,酸回収系の酸回収蒸発缶の濃縮液からの高放射性廃液は,高放射性廃液蒸発缶により蒸発濃縮したのち,分離精製工場(MP)及び高放射性廃液貯蔵場(HAW)に貯蔵する。貯蔵した高放射性廃液は,ガラス固化技術開発施設(TVF)にて必要に応じて組成調整や濃縮を行ったのち,溶融炉へ送り,ガラス原料とともに溶融し,ガラス固化体容器に注入してガラス固化する。ガラス固化体は,同施設及び今後必要な時期に建設する保管施設に保管し,最終処分場の操業開始後随時搬出する。

3.2 低レベル放射性廃棄物

3.2.1 固体廃棄物

(1) 高放射性固体廃棄物

高放射性固体廃棄物貯蔵庫(HASWS)に貯蔵しているハル・エンドピース等の高放射性固体廃棄物は、取出し設備を設置した上で、取り出した高放射性固体廃棄物を貯蔵するために整備する高線量廃棄物廃棄体化処理技術開発施設(第1期施設)(HWTF-1)に搬出し、今後必要な時期に建設する高線量廃棄物廃棄体化処理技術開発施設(第2期施設)(HWTF-2)に搬出するまで同施設に貯蔵する。

各施設(高レベル放射性物質研究施設(CPF(核燃料物質使用施設))を含む。)から発生する清澄系及びリワーク系からの使用済フィルタ,ガラス固化技術開発施設(TVF)の固化セル内で使用した槽類換気系からの使用済のフィルタエレメント等の高放射性固体廃棄物及び第二高放射性廃棄物貯蔵施設(2HASWS)に貯蔵している高放射性固体廃棄物については、高線量廃棄物廃棄体化処理技術開発施設(第2期施設)(HWTF-2)に搬出するまで第二高放射性固体廃棄物貯蔵施設(2HASWS)に貯蔵する。

なお、高レベル放射性物質研究施設(CPF)からの高放射性固体廃棄物の引渡しを受ける際は、分離精製工場(MP)やガラス固化技術開発施設(TVF)等の再処理施設から発生する高放射性固体廃棄物の引渡しに支障がないように行う。

これらの廃棄物は、高線量系固体廃棄物廃棄体化施設(HWTF-2)の整備が整い次第搬出し、処分場の要件に見合うよう廃棄体化処理する。廃棄体は処分場の操業開始後随時搬出する。

(2) 低放射性固体廃棄物

各施設(高レベル放射性物質研究施設(CPF)を含む。)から発生する高放射性固体廃棄物以外の放射性固体廃棄物である低放射性固体廃棄物のうちβγ系の可燃性廃棄物及び難燃性廃棄物は、焼却施設(IF)又は今後整備する低放射性廃棄物処理技術開発施設(LWTF)で焼却する。また、βγ系の難燃性廃棄物(塩素系のものを含む。)は、低放射性廃棄物処理技術開発施設(LWTF)にて焼却する。焼却灰及びPu系の廃棄物は、今後必要な時期に建設する高線量廃棄物廃棄体化処理技術開発施設(第2期施設)(HWTF-2)又は東海固体廃棄物廃棄体化処理技術開発施設(第2期施設)(HWTF-2)又は東海固体廃棄物廃棄体化施設(第1期施設(TWTF-1):α系統合焼却炉、第2期施設(TWTF-2):廃棄体化処理施設及び廃棄体保管施設)に搬出するまで第一低放射性固体廃棄物貯蔵場(1LASWS)又は第二低放射性固体廃棄物貯蔵場(2LASWS)に貯蔵する。

第一低放射性固体廃棄物貯蔵場(1LASWS), 第二低放射性固体廃棄物貯蔵場(2LASWS)並びにアスファルト固化体貯蔵施設(AS1)及び第二アスファルト固化体貯蔵施設(AS2)に貯蔵しているβγ系の不燃性廃棄物,アス

ファルト固化体,プラスチック固化体等は,今後必要な時期に建設する高線量廃棄物廃棄体化処理技術開発施設(第2期施設)(HWTF-2)又は東海固体廃棄物廃棄体化施設(第2期施設)(TWTF-2)に搬出するまで同施設に貯蔵する。

なお,高レベル放射性物質研究施設(CPF)からの低放射性固体廃棄物の 引渡しを受ける際は,再処理施設から発生する低放射性固体廃棄物の焼 却処理,容器への封入又は施設への貯蔵に支障がないように行う。

これらの廃棄物は、高線量廃棄物廃棄体化処理技術開発施設(第2期施設)(HWTF-2)又は東海固体廃棄物廃棄体化施設(第2期施設)(TWTF-2)の整備が整い次第搬出し、処分場の要件に見合うよう廃棄体化処理する。廃棄体は処分場の操業開始後随時搬出する。

3.2.2 液体廃棄物

(1) 中放射性廃液

分離第2サイクルの分離第3抽出器,ウラン精製工程のウラン精製第1抽出器及びプルトニウム精製工程のプルトニウム精製第1抽出器からの水相,高放射性廃液蒸発缶の廃気からの回収酸,濃縮ウラン溶解槽の廃気からの回収酸,脱硝塔の廃気からの回収酸,プルトニウム溶液蒸発缶からの凝縮液,ウラン脱硝施設(DN),プルトニウム転換技術開発施設(PCDF)及びクリプトン回収技術開発施設(Kr)から排出される廃液などは、中放射性廃液として酸回収蒸発缶に供給し、蒸発濃縮する。酸回収蒸発缶の濃縮液は、高放射性廃液蒸発缶へ送り高放射性廃液として処理し、酸回収蒸発缶からの凝縮液は、低放射性廃液として処理する。

また,ガラス固化技術開発施設(TVF)の槽類換気系からの廃液は,中放射性廃液蒸発缶に供給し蒸発濃縮する。中放射性廃液蒸発缶の濃縮液は, 高放射性廃液として処理し、凝縮液は,低放射性廃液として処理する。

(2)低放射性廃液

各施設(高レベル放射性物質研究施設(CPF)を含む。)から発生する高放射性廃液及び中放射性廃液以外の廃液である低放射性廃液は,放射能レベルの区分や性状に応じて,廃棄物処理場(AAF),第二低放射性廃液蒸発処理施設(E),第三低放射性廃液蒸発処理施設(Z)及び放出廃液油分除去施設(C)にて処理を行い,海中放出設備の放出管を通じて海中に放出する。蒸発処理により発生する低放射性濃縮廃液及び廃溶媒処理技術開発施設(ST)での廃溶媒処理に伴い発生するリン酸廃液は,今後整備する低放射性廃棄物処理技術開発施設(LWTF)でセメント固化し,高線量廃棄物廃棄体化処理技術開発施設(第2期施設)(HWTF-2)又は東海固体廃棄物廃棄体化施設(第2期施設)(TWTF-2)に搬出するまで第二アスファルト固化体貯蔵施設(AS2)に貯蔵する。

廃溶媒は、廃溶媒処理技術開発施設(ST)の第 1 抽出槽、第 2 抽出槽及び第 3 抽出槽でTBPとドデカンに分離したのち、TBPはプラスチック固化体とし、東海固体廃棄物廃棄体化施設(第 2 期施設)(TWTF-2)に搬出するまでアスファルト固化体貯蔵施設(AS1)又は第二アスファルト固化体貯蔵施設(AS2)に貯蔵する。固化方法としては、エポキシ樹脂、硬化剤及び添加剤と混合して固化体とする。ドデカンは主に焼却施設(IF)へ送り小型焼却炉で焼却する。

その他,スラッジ貯蔵場(LW)及び第二スラッジ貯蔵場(LW2)に貯蔵しているスラッジは,今後必要な時期に建設する東海固体廃棄物廃棄体化施設(第2期施設)(TWTF-2)に搬出するまで同施設に貯蔵する。

なお,高レベル放射性物質研究施設(CPF)からの低放射性廃液の引渡しを受ける際は,再処理施設から発生する低放射性廃液の放出廃液油分除去施設(C)における処理に支障がないように行う。

セメント固化体は、必要に応じて処分場の要件に見合うよう廃棄体化処理した後、処分場の操業開始後随時搬出する。また、スラッジは、東海固体廃棄物廃棄体化施設(TWTF-2)の整備が整い次第搬出し、処分場の要件に見合うよう廃棄体化処理する。廃棄体は処分場の操業開始後随時搬出する。

高レベル放射性物質研究施設(CPF)からの放射性廃棄物の高線量廃棄物廃棄体化処理技術開発施設(第2期施設)(HWTF-2)及び東海固体廃棄物廃棄体化施設(TWTF-1,2)への受入れは、これら施設計画の具体化に合わせて、その取扱いを検討する。

4. 新規施設における減容処理及び廃棄体化処理

原子力機構におけるこれまでの研究活動により,施設内に既に保管している放射性廃棄物や施設の廃止措置によって今後発生する放射性廃棄物に係るリスクを根本的に低減するため、放射性廃棄物の廃棄体化処理及び処分を推進する。

廃棄体化施設の整備には廃棄体に求められる要件の検討に処分場の情報が必要なことから、第5期中長期目標期間(平成41年度~平成47年度)以降に高線量廃棄物廃棄体化処理技術開発施設(第2期施設)(HWTF-2)と東海固体廃棄物廃棄体化施設(第2期施設)(TWTF-2)を整備する。これに先立ち、低線量TRU固体廃棄物及びU系廃棄物等の可燃性廃棄物、難燃性廃棄物の減容処理を行う東海固体廃棄物廃棄体化施設(第1期施設)(TWTF-1)を整備する。

再処理施設から発生する放射性固体廃棄物についても,高放射性固体廃棄物は高線量廃棄物廃棄体化処理技術開発施設(第2期施設)(HWTF-2)に,低放射性固体廃棄物は高線量系固体廃棄物廃棄体化施設(HWTF-2)又は東海固体廃棄物廃棄体化施設(第1,2期施設)(TWTF-1,2)にそれぞれ搬出し,廃棄体化処理された後,処分場に搬出する。

以上

表 2-1 放射性液体廃棄物の貯蔵場所ごとの種類と貯蔵量

平成 29 年 6 月 30 日現在

廃棄物の貯蔵場所	廃棄物の種類	貯蔵量	放射能量,主要核種
分離精製工場	高放射性廃液※1	約 24 m³	約 5×10 ¹⁶ Bq
(MP)	(希釈廃液)		主要核種:FP(¹³⁷ Cs 等)
高放射性廃液貯蔵場	高放射性廃液※1	約 340 m³	約 3×10 ¹⁸ Bq
(HAW)			主要核種:FP(¹³⁷ Cs 等)
	低放射性	約 547 m³	$\langle 1 \times 10^{14} \text{ Bq}$
廃棄物処理場	濃縮廃液※2		主要核種:FP(¹³⁷ Cs等)
(AAF)	廃溶媒※3	約 14 m³	$\langle 1 \times 10^{10} \text{ Bq}$
			主要核種:FP(¹³⁷ Cs等)
第三低放射性廃液蒸発処理施設	低放射性	約 829 m³	$\langle 1 \times 10^{11} \text{ Bq}$
(Z)	濃縮廃液※2		主要核種:FP(¹³⁷ Cs等)
	廃溶媒※3	約 30 m³	$\langle 1 \times 10^{10} \text{ Bq}$
スラッジ貯蔵場			主要核種:FP(¹³⁷ Cs等)
(LW)	スラッジ**4	約 285 m³	$\langle 1 \times 10^9 \text{ Bq}$
			主要核種:FP(¹³⁷ Cs 等)
	低放射性	約 574 m³	$\langle 1 \times 10^{13} \text{ Bq}$
第二スラッジ貯蔵場	濃縮廃液※2		主要核種:FP(¹³⁷ Cs等)
(LW2)	スラッジ※4	約872 m³	$\langle 1 \times 10^9 \text{ Bq}$
			主要核種:FP(¹³⁷ Cs等)
廃溶媒貯蔵場	廃溶媒※3	約 56 m³	$\langle 1 \times 10^{10} \text{ Bq}$
(WS)			主要核種:FP(¹³⁷ Cs 等)
廃溶媒処理技術開発施設	廃溶媒※3	約8 m³	$\langle 1 \times 10^{10} \text{ Bq}$
(ST)			主要核種:FP(¹³⁷ Cs 等)
アスファルト固化処理施設	低放射性	約 97 m³	$\langle 1 \times 10^{13} \text{ Bq}$
(ASP)	濃縮廃液※2		主要核種:FP(¹³⁷ Cs等)
	低放射性	約1,032 m³	$< 1 \times 10^{14} \text{ Bq}$
低放射性濃縮廃液貯蔵施設	濃縮廃液※2		主要核種:FP(¹³⁷ Cs等)
(LWSF)	11 人工系统 内壳 分左※5	% 5 17 . 3	$\langle 1 \times 10^{12} \text{ Bq}$
	リン酸廃液※5	約 17 m³	主要核種:FP(¹³⁷ Cs 等)

上記の他, 焼却できない廃油(フッ素系機械油(分離精製工場(MP) 槽類換気系室に約22 L保管)) 等が存在する。これらについては, 高線量廃棄物廃棄体化処理技術開発施設(第2 期施設)(HWTF-2)及び東海固体廃棄物廃棄体化施設(第2 期施設)(TWTF-2)を整備するまでに処理方法を検討し, それまでの間, 施設内で適切に管理する。

- ※1 抽出工程から発生した抽出廃液等を高放射性廃液蒸発缶にて蒸発濃縮した廃液。
- ※2 低放射性廃液第一蒸発缶又は低放射性廃液第三蒸発缶にて蒸発濃縮した廃液。
- ※3 抽出工程にて使用した溶媒(TBP-ドデカン溶液)。
- ※4 凝集沈殿処理装置にて生成した沈殿物。
- ※5 廃溶媒を TBP とドデカンに分離する際に発生するリン酸を含む廃液を蒸発缶にて蒸発 濃縮した廃液。

表 2-2 放射性固体廃棄物の貯蔵場所ごとの種類と貯蔵(保管)量

平成 29 年 6 月 30 日現在

廃棄物の貯蔵場所	廃棄物の種類	貯蔵(保管)量
ガラス固化技術開発施設 (TVF)	ガラス固化体	306 本
高放射性固体廃棄物貯蔵庫 (HASWS)	雑固体廃棄物, ハル・エンドピース等	約 2,884 本 ^{※1}
	分析廃ジャグ等	約 1, 381 本 ^{※1}
第二高放射性固体廃棄物貯蔵施設 (2HASWS)	雑固体廃棄物, ハル・エンドピース等	約 2, 492 本 ^{※1}
第一低放射性固体廃棄物貯蔵場 (1LASWS)	雑固体廃棄物	約 33, 161 本 ^{※1}
第二低放射性固体廃棄物貯蔵場 (2LASWS)	雑固体廃棄物	約 11,566 本 ^{※1}
アスファルト固化体貯蔵施設 (AS1)	アスファルト固化体**2	13,754 本
	プラスチック固化体	828 本
第二アスファルト固化体貯蔵施設 (AS2)	アスファルト固化体**2	16, 213 本
	プラスチック固化体	984 本
	雑固体廃棄物	19 本

上記の他, 凝集沈殿焙焼体^{※3}(プルトニウム転換技術開発施設(PCDF)固体廃棄物置場に約 kg 保管), クリプトンの固化体(クリプトン回収技術開発施設(Kr)固定化試験セルに5 基保管), ヨウ素フィルタ(分離精製工場(MP)排気フィルタ室,ガラス固化技術開発施設(TVF)保守区域,廃棄物処理場(AAF)排気フィルタ室に67 基保管)等が存在する。これらについては,高線量廃棄物廃棄体化処理技術開発施設(第2期施設)(HWTF-2)及び東海固体廃棄物廃棄体化施設(第2期施設)(TWTF-2)を整備するまでに処理方法を検討し,それまでの間,施設内で適切に管理する。

- ※1 200 リットルドラム缶換算値
- ※2 アスファルト固化体:低放射性濃縮廃液及びリン酸廃液をアスファルトと混合脱水 し固化したもの。今後アスファルト固化処理は行わず,アスファルト固化体は発生し ない。
- ※3 凝集沈殿焙焼体:硝酸プルトニウム溶液及び硝酸ウラニル溶液の混合溶液を脱硝した際に発生する廃液を中和処理し、そのろ液について硝酸第二鉄、高分子凝集剤等で凝集することにより発生する沈殿物を乾燥・焙焼した固形物。これらの凝集沈殿焙焼体は、水洗浄により更なる安定化を図った後、プルトニウム転換技術開発施設(PCDF)固体廃棄物置場に保管する。

表 2-3 解体の対象となる施設から発生する低レベル放射性廃棄物 (固体及び液体)の推定発生量

(単位:トン)

放射能レベル	再処理施設全体
低レベル放射性廃棄物 (固体及び液体)	約 71,000

- ※1 再処理に伴い発生した放射性廃棄物 約22,700 トン,機器解体に伴い発生する解体廃棄物 約48,600 トンの合計
- ※2 解体廃棄物には、管理区域解除に必要な建家コンクリートのはつり分を含む。
- ※3 推定発生量には、解体作業に伴い発生する防護着や養生シート等の付随廃棄物 を含まない。
- ※4 原子炉等規制法第61条の2に従って放射能濃度の確認を受けることなどにより、低レベル放射性廃棄物の発生量は変動することがある。

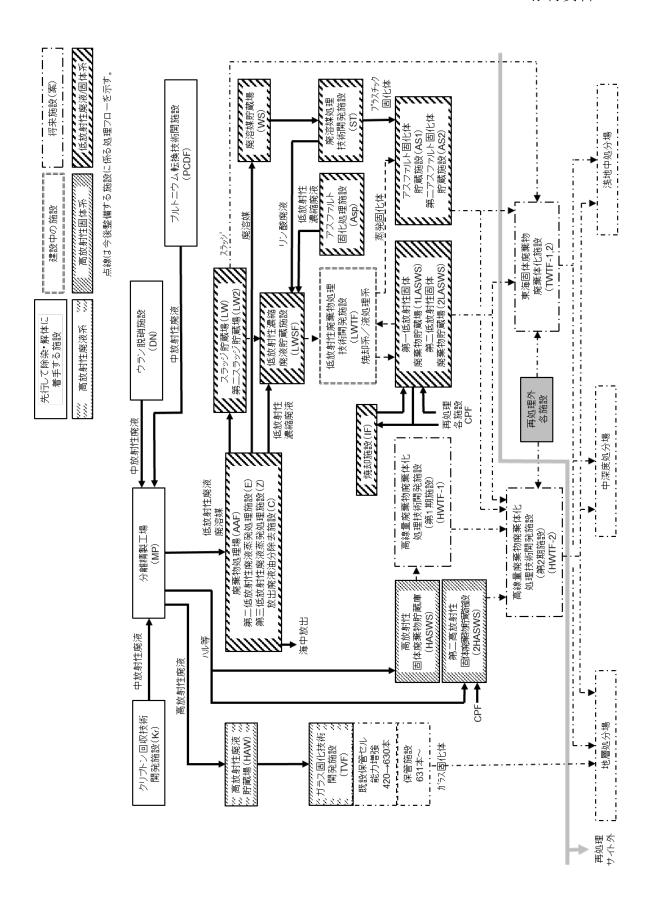


図 2-1 各施設間の主要な放射性廃棄物の流れ